Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC) và cạnh BD vuông góc với cạnh BC. Biết AB = AD = a, tính diện tích xung quanh và thể tích của khối nón được tạo thành khi quay đường gấp khúc BDA quanh cạnh AB ?
Trong mặt phẳng \(\left(\alpha\right)\), cho tam giác ABC vuông tại A có cạnh AC = a và có cạnh huyền BC = 2a. Cũng trong mặt phẳng \(\left(\alpha\right)\) đó cho nửa đường tròn đường kính AB cẳ BC tại M
a) Chứng minh rằng khi quay mặt phẳng \(\left(\alpha\right)\) xung quanh AB có một mặt nón tròn xoay và một mặt cầu được tạo thành. Hãy xác định các mặt tròn xoay đó ?
b) Chứng minh rằng giao tuyến của hai mặt tròn xoay đó là một đường tròn. Hãy xác định bán kính của đường tròn đó ?
c) So sánh diện tích toàn phần của hình nón và diện tích của mặt cầu nói trên
một tứ diện đều cạnh a có một đỉnh trùng với đỉnh hình nón ba đỉnh còn lại nội tiếp đáy hình nón , diện tích xung quanh hình nón là
Cho hình lập phương ABCD.A'B'C'D' cạnh a
a) Tính diện tích xung quanh của hình trụ có đường tròn hai đáy ngoại tiếp các hình vuông ABCD và A'B'C'D'
b) Tính diện tích mặt cầu đi qua tất cả các đỉnh của hình lập phương
c) Tính diện tích xung quanh của hình nón tròn xoay nhận đường thẳng AC' làm trục và sinh ra bởi cạnh AB
Cho tứ diện ABCD có \(AB\perp BC;DA\perp\left(ABC\right)\). Gọi M và N theo thứ tự là chân đường vuông góc kẻ từ A đến DB và DC. Biết AB = AD = 4a; BC = 3a
a) Chứng minh rằng năm ddierm A, B, C, M. N cùng nằm trên một mặt cầu (S). Tính thể tích mặt cầu đó
b) Gọi (S') là mặt cầu ngoại tiếp tứ diện ADMN. Chứng minh rằng (S) và (S') giao nhau theo một đường tròn. Tìm bán kính của đường tròn đó
1)Trong không gian cho tam giác ABC đều có chu vi bằng 6a, gọi H là trung điểm BC. Khi quay tam giác ABC quanh trục AH ta được một hình nón tròn xoay. Tính thể tích của khối nón? 2)Cho khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, BC=a√2. Góc giữa B'C và đáy bằng 45⁰. Tính thể tích V của khối lăng trụ đã cho?
Cho lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng a và có đường cao h
a) Một hình trục có các đường tròn đáy tiếp xúc với các cạnh của tam giác đáy được gọi là hình trụ nội tiếp trong lăng trụ. Hãy tính diện tích xung quanh của hình trụ nội tiếp đó ?
b) Gọi I là trung điểm của cạnh BC. Đường thẳng A'I cắt hình trụ nội tiếp nói trên theo một đoạn thẳng. Tính độ dài đoạn thẳng đó ?
Cho tam giác vuông cân ABC có cạnh AB = 2a. Trên đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC), lấy một điểm S khác K, ta được tứ diện SABC
a) Xác định tâm mặt cầu ngoại tiếp tứ diện SABC
b) Tính bán kính của mặt cầu ngoại tiếp tứ diện SABC trong trường hợp mặt phẳng (SBC) tạo với mặt phẳng (ABC ) một góc bằng \(30^0\)
Cho tứ diện ABCD cạnh a. Gọi H là hình chiếu vuông góc của đỉnh A xuống mặt phẳng (BCD)
a) Chứng minh H là tâm đường tròn ngoại tiếp tam giác BCD. Tính độ dài đoạn AH
b) Tính diện tích xung quanh và thể tích của khối trụ có đường tròn đáy ngoại tiếp tam giác BCD và chiều cao AH