Cho tứ diện ABCD. Các điểm M, N, P lần lượt thuộc các cạnh AB, AD, BC sao cho:
\(\frac{{AM}}{{AB}} = \frac{1}{3},\frac{{AN}}{{AD}} = \frac{2}{3},\frac{{BP}}{{BC}} = \frac{3}{4}\)
a) Xác định E. F lần lượt là giao điểm của các đường thẳng AC, BD với mặt phẳng (MNP)
b) Chứng minh rằng các đường thẳng NE, PE và CD cùng đi qua một điểm
Tham khảo:
a) Tam giác ABC có: MP cắt AC tại E
Mà MP thuộc (MNP)
Nên E là giao điểm của AC và (MNP)
Tam giác ABD có: MN cắt BD tại F
Mà MN thuộc (MNP)
Nên F là giao điểm của BD và (MNP)
b) Ta có: P thuộc BC
F thuộc BD
Suy ra PF thuộc (BCD)
Do đó PF và CD cùng thuộc (BCD)
Nên PF và CD cắt nhau tại một điểm (1)
Ta có: N thuộc AD
E thuộc AC
Suy ra NE thuộc (ACD)
Do đó NE và CD cắt nhau tại một điểm (2)
Từ (1) và (2) suy ra: NE, PE, CD cùng đi qua một điểm