Cho tam giác ABC có góc B bằng \(120^0\), BC = 12 cm, AB = 6cm. Đường phân giác của góc B cắt cạnh AC tại D
a) Tính độ dài đường phân giác BD
b) Gọi M là trung điểm của BC. Chứng minh \(AM\perp BD\)
Cho tam giác ABC vuông tại A, các đường phân giác BD và CE cắt nhau tại I (D,E lần lượt thuộc CA, AB). Gọi M là trung điểm của BC. Giả sử góc BIM = 90 .
1. Chứng minh rằnggóc BIC=135 độ và góc CID = góc CIM = 45 độ .
2. Chứng minh rằng hai tam giác ICD, ICM bằng nhau và BC =2CD.
3. Biết BC =10 cm. Chứng minh rằng AB = 2AD và tính độ dài của các đoạn thẳng AB,CA.
Cho tam giác MNP vuông tại M (MN-MP), đường cao MH. Gọi D và E lần lượt là hình chiếu của H trên MN và MP. 2/ Chứng minh: MD.MN =ME, MP MN² b/ Chứng minh: MP4 PH và chứng minh MH = NPNDPE NH có Qua M kẻ đường vuông góc với DE cắt NP tại K. Chứng minh Kỉ là trung điểm Nh d/ Cho góc P=a; NP = a. Từ M kẻ đường vuông góc với MK cắt tia PN tại I. Chứng minh PI a.(cos 2a+1) 2cos 2a
Cho tam giác MNP, biết MN bằng 5cm, NP bằng 13cm, MP bằng 12cm. Chứng minh rằng: góc P bé hơn góc M, góc N bé hơn góc M
Cho tam giác ABC vuông tại A( AB>AC), đường cao AH. Gọi M là trung điểm của AB,AD là phân giác của góc BAH (D thuộc BH),MD cắt AH tại E.
a)Chứng minh rằng: \(\dfrac{AB^2}{BH}=\dfrac{AC^2}{CH}\)
b)Tính độ dài AH biết diện tích các tam giác AHC và ABH lần lượt là 8,64 cm2 và 15,36cm2 .
c) Chứng minh rằng: CE//AD
cho (O;R) M bên ngoài (O) . Vẽ 2 tiếp tuyến MA,MB
a)CM ; MAOB nội tiếp
b)CM ; MO vuông góc AB tại H
c)Vẽ đường kính AC - CM CB song song MO
e) K là giao điểm của (O) và MO
CM ; AM là phân giác MAB
Cho tam giác DEF biết DE = 6 cm, DF = 8 cm, EF = 10cm.
a) Cmr : Tam giác DEF là tam giác vuông
b) Vẽ DK là đường cao. Tính DK và FK
c) Giải tam giác EDK
d) Vẽ phân giác trong EM của góc DEF. Tính MD, MF, ME.
e) Tính sin F trong các tam giác vuông DFK và DEF. Từ đó suy ra : ED . DF = DK . EF
cho tam giác abc vuông tại a đường cao ah trên bc lấy d khác h . tính ab ac ah biết hb=1.8 hc=3.2 .kẻ dm vuông góc với ab tại m dn vuông góc với ac tại n chứng minh bm.cn=dm.dn
\(Cho tam giác CDE vuông tại C, đường cao CH. Kẻ HA vuông góc với CD, HB vuông góc với CE. Biết CH=9cm, DH= 4 cm a) tính AB,HE, góc D b) chứng minh CA.CD=CB.CE c) Kẻ AM và BN vuông góc với AB. Chứng minh M,N lần lượt là trung điểm của DH và HE d) Tính diện tích tứ giác ABNM\)