1: \(3P=3^2+3^3+3^4+...+3^{61}\)
\(\Leftrightarrow2P=3^{61}-3\)
hay \(P=\dfrac{3^{61}-3}{2}\)
2: \(P=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{59}\right)⋮4\)
\(P=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{58}\right)⋮13\)
\(P=4\left(3+3^3+...+3^{59}\right)=4\cdot3\cdot\left(1+3^2+...+3^{58}\right)=12\cdot\left(1+3^2+...+3^{58}\right)⋮12\)