1: \(5P=5+5^2+5^3+...+5^{60}\)
\(\Leftrightarrow4P=5^{60}-1\)
hay \(P=\dfrac{5^{60}-1}{4}\)
2: \(P=\left(1+5\right)+5^2\left(1+5\right)+...+5^{58}\left(1+5\right)\)
\(=6\cdot\left(1+5^2+...+5^{58}\right)⋮6\)
\(P=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\)
\(=31\cdot\left(1+5^3+...+5^{57}\right)⋮31\)