a) \(M=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow M=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(\Rightarrow M=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(\Rightarrow M=2.31+...+2^{96}.31\)
\(\Rightarrow M=\left(2+...+2^{96}\right).31⋮31\)
\(\Rightarrow M⋮31\)
b) \(M=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2M=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2M-M=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow M=2^{101}-2\)
a) M = 2 + 22 + 23 + ... + 2100
= (2+22+23+24+25) + (26+27+28+29+210) + ... + (296+297+298+299+2100)
= 2(1+2+22+23+24) + 26(1+2+22+23+24) + ... + 296(1+2+22+23+24)
= 31(2+26+...+296) \(⋮\) 31
b) M = 2 + 22 + ... + 2100
=> 2M = 22 + 23 + ... + 2101
=> 2M - M = 2101 - 2
=> M = 2101 - 2
Làm ơn giúp mk với nha ! thanks nhìu !