cho tích 800 số tự nhiên từ 1 đến 800 là A=1.2.3.4.5.800 thì dạng phân tích A ra thừa số nguyên tố chứa thừa số 5 có số mũ là bao nhiêu
thừa số lớn nhất khi phân tích 2^16 - 16 ra thừa số nguyên tố là
Câu 1 : Thừa số nguyên tố lớn nhất khi phân tích ra số \(2^{16}\) - 16 ra thừa số nguyên tố
Câu 2 : Giá trị nguyên n lớn nhất để \(\frac{n^2-38}{n+1}\) là một số nguyên
Câu 3 : Số dư khi chia \(2^{30}\) cho \(10^3\)
Câu 1: Khi phân tích 2016 ra thừa số nguyên tố thì tổng các số nguyên tố là....
Câu 2: Cho hình vuông ABCD. Lấy các điểm E,F,G,H lần lượt trên cạnh AD, AB, DC và BC sao cho AE=AF=DH=5cm; BF=BG=12 cm. Diện tích EFGH=?
thanks mn nha!!))
1- Số chính phương chỉ có thể có chữ số tận cùng bằng 0, 1, 4, 5, 6, 9; không thể có chữ tận cùng bằng 2, 3, 7, 8.
2- Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn.
3- Số chính phương chỉ có thể có một trong hai dạng 4n hoặc 4n+1. Không có số chính phƣơng nào có dạng 4n + 2 hoặc 4n + 3 (n thuộc N).
4- Số chính phương chỉ có thể có một trong hai dạng 3n hoặc 3n +1. Không có số chính phương nào có dạng 3n + 2 ( n thuộc N ). 5- Số chính phương tận cùng bằng 1, 4 hoặc 9 thì chữ số hàng chục là chữ số chẵn. Số chính phương tận cùng bằng 5 thì chữ số hàng chục là 2. Số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.
6- Số chính phương chia hết cho 2 thì chia hết cho 4. Số chính phương chia hết cho 3 thì chia hết cho 9 Số chính phương chia hết cho 5 thì chia hết cho 25 Số chính phương chia hết cho 8 thì chia hết cho 16.
mọi người làm ơn giúp em tìm ví dụ của từng tính chất với ạ! ( nhớ nêu ví dụ cụ thể, rõ ràng, dễ hiểu nhá)
Thừa số nguyên tố lớn nhất khi phân tích số 216 - 16 ra thừa số nguyên tố
Với n là số tự nhiên khác 0 . kí hiệu n! là tích của n số tự nhiên liên tiếp từ 1 đến n
Với mọi n >2 hoặc n =2 thì giá trị của A=\(\frac{\left(x+2\right)!}{\left(x-1\right)!}\) bằng giá trị của biểu thức nào dưới đây :
Tìm các số tự nhiên a>1 để biểu thức \(M=a^4-5a^2-6a-5\) có giá trị là số nguyên tố
Với phân số A=\(\frac{n^2+4}{n+5}\). Hỏi có bao nhiêu số tự nhiên n trong khoảng từ 1 đến 2002 sao cho phân số chưa tối giản.