Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Big City Boy

Tìm các số tự nhiên a>1 để biểu thức \(M=a^4-5a^2-6a-5\) có giá trị là số nguyên tố

Nguyễn Việt Lâm
13 tháng 1 2021 lúc 23:52

\(M=a^4+a^3+a^2-a^3-a^2-a-5a^2-5a-5\)

\(M=a^2\left(a^2+a+1\right)-a\left(a^2+a+1\right)-5\left(a^2+a+1\right)\)

\(M=\left(a^2+a+1\right)\left(a^2-a-5\right)\)

M là số nguyên tố khi và chỉ khi \(a^2+a+1\) là SNT và \(a^2-a-5=1\)

\(\Rightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-2\left(loại\right)\end{matrix}\right.\)

Thay \(a=3\) vào ta được \(a^2+a+1=13\) là SNT (thỏa mãn)

Vậy \(a=3\)


Các câu hỏi tương tự
nguyen ngoc son
Xem chi tiết
Big City Boy
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết