( vẽ hình hơi xấu chút xíu ! thông cảm ha ! )
a,
\(\widehat{AOB}\) là góc vuông = \(90^o\)
Vì Ox là tia phân giác của \(\widehat{AOB}\)
\(\Rightarrow\widehat{AOx}\) = \(\widehat{xOB}\) = \(\dfrac{1}{2}\widehat{AOB}\) = \(90^o.\dfrac{1}{2}=45^o\)
Vì Ox' là tia đối của Ox
=> \(\widehat{x'OB}\) và \(\widehat{BOx}\) là 2 góc kề bù
=> \(\widehat{x'OB}+\widehat{BOx}=180^o\)
=> \(\widehat{x'OB}+45^o=180^o\)
=> \(\widehat{x'OB}=180^o-45^o=135^o\)
Vì Ox' và Ox đối nhau
=> \(\widehat{x'OA}\) và \(\widehat{AOx}\) kề bù
=> \(\widehat{x'OA}+\widehat{AOx}=180^o\)
=> \(\widehat{x'OA}+45^o=180^o\)
=> \(\widehat{x'OA}=180^o-45^o=135^o\)
\(\widehat{x'OA}=135^o\) và \(\widehat{x'OB}=135^o\) \(\Rightarrow\widehat{x'OA}=\widehat{x'OB}=135^o\)
b.
Vì OB và OB' đối nhau
=> \(\widehat{x'OB}\) và \(\widehat{x'OB'}\) kề bù
=> \(\widehat{x'OB}+\widehat{x'OB'}=180^o\)
=> \(135^o+\widehat{x'OB'}=180^o\)
=> \(\widehat{x'OB'}=180^o-135^o=45^o\)
Vì \(\widehat{x'OB'}=45^o\) ; \(\widehat{AOx}=45^o\) \(\Rightarrow\widehat{x'OB'}=\widehat{AOx}=45^o\)