Cho a, b, c, d, e là các số hữu tỉ ( khác 0). Các số hửu tỉ d và e phải thỏa mãn điểu kiện gì để từ tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\) có thể suy ra tỉ lệ thức \(\frac{a}{b}\)= \(\frac{a+c}{b+c}\)
các anh chị ở học 24 h nào mà chuyên toán 7 thì giúp em nhé
cho tỉ lệ thức\(\frac{a+b+c}{a+b-c}\)=\(\frac{a-b+c}{a-b-c}\) trong đó b khác 0 . chứng minh c=0
1. Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) (với b+d \(\ne\) 0) ta suy ra được \(\frac{a}{b}=\frac{a+c}{b+d}\)
2. Cho a,b,c,d \(\ne\) 0 . Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) hãy suy ra tỉ lệ thức \(\frac{a-b}{a}=\frac{c-d}{c}\)
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) ( a - b \(\ne\) 0, c - d \(\ne\) 0 ) ta có thể suy ra tỉ lệ thức
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\)(a-b ko bằng 0, c-d ko bằng 0)ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
cho tỉ lệ thức
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}trongđób\ne0\)
chứng minh rằng c=0
Các số hữu tỉ a và b phải thỏa manx điều kiện gì để có tỉ lệ thức \(\frac{a}{b}\)=\(\frac{a+c}{b+c}\)(c khác 0)
Help me! Mai tui phải đi hk rùi mong các bn giải giúp tôi nhanh lên nha!
Chứng minh rằng từ tỉ lệ thức a/b = c/d ( a - b khác 0, c - d khác 0 ), ta có thể suy ra tỉ lệ thức a + b/a - b = c + d/c - d.
chứng minh rằng từ tỉ lệ thức a/b=c/d (a-b khác 0,c-d khác 0) ta có suy ra tỉ lệ thức a+b/a-c=c+d/c-d