a: Xét ΔHBA vuông tại H có cos B=HB/AB
nên AB=2a
=>BC=4a
\(AC=\sqrt{\left(4a\right)^2-\left(2a\right)^2}=2a\sqrt{3}\)
b: \(cos^2ABD=\left(\dfrac{BA}{BD}\right)^2=\dfrac{BA^2}{BD^2}=\dfrac{BH\cdot BC}{BD\cdot BD}=\dfrac{BK}{BC}\cdot\dfrac{BC}{BD}=\dfrac{BK}{BD}\)
BH*BC=BA^2
BD*BK=BA^2
DO đó: BH*BC=BD*BK
=>BH/BK=BD/BC
=>ΔBHD đồng dạng với ΔBKC
=>\(\dfrac{S_{BHD}}{S_{BKC}}=\left(\dfrac{BH}{BK}\right)^2=\dfrac{BH^2}{BK^2}=\dfrac{1}{4}\cdot cos^2ABD\)