a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
cho t/g ABC có AB=BC Trên các cạnh AB, AC lấy lần lượt các điểm D và E sao cho AD=AE
Gọi O là giao điểm của BE và CD. Chứng minh rằng:
a,tam giác abe=acd
b,od=oe,ob=oc
Cho tam giác ABC cân tại A. Trên cạnh AB và AC lần lượt lấy điểm E và D sao cho AD=AE.Gọi G là giao điểm của BD và CE.Chứng minh rằng:
a)BD=CE
b)Tam giácDGE cân
c)Tính chu vi tam giác ABC biết tam giác có độ dài 2 cạnh lần lượt là 5 cm và 10 cm
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy điểm E sao cho CE = AB. Kẻ các đường trung trực của các đoạn thẳng BE và AC, chúng cắt nhau ở O. a) Chứng minh: OB = OE b) Chứng minh: AO là tia phân giác của góc BAC
Cho tam giác ABC. Trên tia đối của các tia AB, AC lần lượt lấy các điểm D và E sao cho AD= AB và AE= AC
a) Chứng minh: tam giác ABC= tam giác ADE
b) Chứng minh DE // BC
c) Gọi M, N lần lượt là trung điểm của BC và DE. Chứng minh A là trung điểm của MN
cho tam giác ABC cân tại A lấy điểm D trên cạnh AB điểm E trên cạnh AC sao cho AD=AE. Gọi K là giao điểm của CD và BE. Chứng minh rằng: a)BE=CD b) tam giác KBD=tam giác KCE c)AK là tia phân giác của A d)tam giác KBClaf tam giác cân
Bài 5 Cho tam giác ABC vuông tại A ( AB < AC ). Trên cạnh BC lấy điểm D sao cho AB = BD. Vẽ tia phân giác của ABC cắt AC tại E, gọi F là giao điểm của DE và AB.
1) Chứng minh: ABE = DBE.
2) Chứng minh – BE vuông góc với AD tại M
3) Gọi N là trung điểm của CF. Chứng minh – 3 điểm B, E, N thẳng hàng.
Bài 8: Cho tam giác ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD
b) tam giác BMD = tam giác CME.
c) AM là tia phân giác của góc BAC.
Cho tam giác ABC vuông cân đỉnh A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E, sao cho AD=AE. Gọi I là giao điểm của BE và CD, chứng minh:
a, BE=CD
b, tam giác BID = tam giác CIE
c, AI là trung trực của đoạn thẳng BC
d, Qua D vẽ đường thẳng vuông góc với BE, cắt BE ở K, cắt AC ở H, chứng minh: A là trung điểm của đoạn thẳng HC
Giúp mik với mik đang cần gấp!!!!
Câu 1: Cho tam giác cân ABC c©n t¹i A (AB = AC). Gọi D, E lần lượt là trung điểm của AB và AC. a) Chứng minh = ABE ACD. b) Chứng minh BE = CD. c) Gọi K là giao điểm của BE và CD. Chứng minh KBC c©n t¹i K. d) Chøng minh AK là tia phân giác của BAC