Một số chia hết cho 11 khi thỏa điều kiện: Lấy chữ số đầu tiên trừ cho chữ số thứ 2 rồi cộng cho chữ số thứ 3 rồi trừ cho chữ số thứ 4… Tiếp tục quy luật này đến chữ số cuối cùng, không phân biệt kết quả là số âm hay dương. Nếu kết quả đó chia hết cho 11 thì số ban đầu sẽ chia hết cho 11Một số chia hết cho 11 khi thỏa điều kiện: Lấy chữ số đầu tiên trừ cho chữ số thứ 2 rồi cộng cho chữ số thứ 3 rồi trừ cho chữ số thứ 4… Tiếp tục quy luật này đến chữ số cuối cùng, không phân biệt kết quả là số âm hay dương. Nếu kết quả đó chia hết cho 11 thì số ban đầu sẽ chia hết cho 11
vì vậy ta có số cần tìm là n=11m nếu n có chữ số tận cung là 1 thì ta có
11m \(\equiv\)1(mod10)
\(\Leftrightarrow\)m\(\equiv\)1(mod 10)
vây m=10k+1=>n=110k+11
do n có 6 chữ số nên
10^5\(\le\)110k+11\(\le\)10^6-1
\(\dfrac{10^5-11}{110}\le k\le\dfrac{10^6-12}{110}\)
số số nguyên trong đoạn này là
\(\left[\dfrac{10^6-12}{110}\right]-\left[\dfrac{10^5-11}{110}\right]+1=9090-908+1=8183\) số chia hết cho 11 tận cùng =1
ta có 111111,.........=> số chữ số tm đề ra nhưng tận cùng =1 là 8183-...
tương tự cho tận cùng =2,=3...=9