`@1+tan^2 a=1/[cos^2 a]=>1+3^2=1/[cos^2 a]=>cos^2 a=1/10`
`@tan a=3=>[sin a]/[cos a]=3=>sin a=3cos a`
Thay vào `A` có: `A=[2.3cos a-cos a]/[(3cos a)^3+2cos^3 a]`
`A=[5cos a]/[29cos^3 a]=5/[29 cos^2 a]=5/[29. 1/10]=50/29`
tan a=3 nên sin a/cosa=3
=>sin a=3 cosa
\(A=\dfrac{2\cdot3cosa-cosa}{27\cdot cos^3a+2cos^3a}=\dfrac{5cosa}{29cos^3a}=\dfrac{5}{29cos^2a}\)