Cho tam giác ABC cân tại A. Trên canh AB và AC lần lượt lấy các điểm M và N sao cho BM = CN
a, Chứng minh tam giác BMC = tam giác CNB
b, Chứng minh góc ABN = góc ACM
c, Chứng minh MN // BC
d, Gọi O là giao điểm của BN và CM. I là trung điểm của BC. Chứng minh ba điểm A, O, I thẳng hàng.
VẼ HÌNH GIÚP MÌNH NHA. CẢM ƠN Ạ
cho tam giác ABC cân tại A. Trên cạnh BC lần lượt là BC lần lượt lấy các điểm M và N ( M nằm giữa B và N ) sao cho BM = CN. Kẻ MH vuông góc với AB; NK vuông góc với AC. Chứng minh:
a) Tam giác MHB = tam giác NKC
b) AH = AK
c) tam giác AMN cân tại A
Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC
Cho tam giác ABC có AB=AC, trên AB,AC lấy thứ tự các điểm M,N sao cho Am=AN. Nối CM, BN.
a, chỉ ra các tam giác bằng nhua (chứng minh)
b, CMR: MN//BC
Cho tam giác ABC cân tại A. Trên 2 cạnh AB và AC lần lượt lấy hai điểm M và N sao cho AM = AN. Kẻ AH vuông góc với BC, H ∈ BC
a. Chứng minh tam giác ABH = tam giác ACH
b. Chứng minh BN=CM
c. Nếu cho cạnh AH=8cm, AB= 10cm. Tính cạnh BC
cho △ ABC nhọn (AB>AC) .Gọi M là trung điểm của BC ,gọi H là hình chiếu vuông góc của B trên AM . Trên tia đối của tia AM lấy N sao cho AN=2MH.Chứng minh rằng BN=AC
a, Chứng minh rằng MP = MQ và AP = AQ.
b, Đường thẳng PQ có vuông góc với AM không? Vì sao?
VẼ HÌNH GIÚP MÌNH NHA. CẢM ƠN Ạ
Cho tam giác ABC cân tại A, trên cạnh AB lấy điểm M, trên cạnh AC kéo dài lấy điểm N sao cho CN=BM. Gọi H,K lầm lượt là hình chiếu của M,N trên BC,MN cắt BC tại I. Chứng minh:
a)MH=NK
b) I là trung điểm của MN.
c)Chứng minh khi M di chuyển trên AB thì đường trung trực của MN luôn đi qua 1 điểm cố định.
Cho tam giác ABC cân tại A. AH vuông góc với BC(H € BC)
a) CM HB=HC
b) Trên tia đối BC lấy điểm M. Trên tia đối CB lấy điểm N sao cho BM=CN. Kẻ BH vuông góc với AM tại E, CF vuông góc với AN tại F. Gọi I là giao điểm của EB và FC. CM A, H, I thẳng hàng