GT | \(\Delta OMB\) vuông tại O BK là tia phân giác của \(\widehat{B}\) BO = BI A là giao điểm của BO và IK |
KL | a) \(KI\perp BM\) b) KA = KM |
Giải:
a) Xét \(\Delta BOK,\Delta BIK\) có:
\(BO=BI\left(gt\right)\)
\(\widehat{B_1}=\widehat{B_2}\left(=\frac{1}{2}\widehat{B}\right)\)
BK: cạnh chung
\(\Rightarrow\Delta BOK=\Delta BIK\left(c-g-c\right)\)
\(\Rightarrow\widehat{O_1}=\widehat{I_1}\) ( góc t/ứng )
Mà \(\widehat{O_1}=90^o\Rightarrow\widehat{I_1}=90^o\)
\(\Rightarrow KI\perp BM\left(đpcm\right)\)
b) Vì \(\Delta BOK=\Delta BIK\Rightarrow KO=KI\) ( cạnh t/ứng )
Xét \(\Delta OAK,\Delta IMK\) có:
\(\widehat{O_2}=\widehat{I_2}\left(=90^o\right)\)
\(KO=KI\left(cmt\right)\)
\(\widehat{K_1}=\widehat{K_2}\) ( đối đỉnh )
\(\Rightarrow\Delta OAK=\Delta IMK\left(g-c-g\right)\)
\(\Rightarrow KA=KM\) ( cạnh t/ứng )
\(\Rightarrowđpcm\)
Vậy...