Cho tam giác OBC có OB = 2cm, OC = 3cm. Trên tia đối của OB lấy điểm A sao cho OA = 2,5cm. Đường thẳng đi qua A và song song với BC cắt OC tại D. Tính OD
Cho tam giác obc có ob=2cm, oc=3cm. Kéo dài từ b đến o thành đoạn thẳng ba=6cm. Đường thẳng qua a và song song với bc cắt oc kéo dài tại d. tính cd và od.
Mọi người áp dụng đinh lý Thales thuận giải giúp em với ạ. Em cảm ơn.Bài 4: Cho góc xOy. Trên tia Ox theo thứ tự lấy điểm A và B(A nằm giữa O và B)sao họ OA=2cm, AB=3cm. Trên tia Oy lấy điểm C sao cho OC=3cm. Từ B kẻ đường thẳng song song với AC cắt OI tại D. Tính độ dài CD
Cho △AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của OB lấy D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO tại C. Gọi F là giao điểm của AD và BC.
a) Tính CD, OC
b) Tính tỉ số \(\frac{FD}{FA}\)
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Tính OM, ON
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. Trên cạnh AB lấy điểm M sao cho AM = 2cm. Từ M kẻ đường thẳng song song với BC cắt AC tại N. a) Tính độ dài các đoạn thẳng MN, NC. b) Lấy điểm I bất kỳ trên cạnh BC (I khác B, C). Vẽ điểm O trên đoạn AI sao AI = 3AO. Chứng minh ba điểm M, N, O thẳng hàng.
Cho đoạn thẳng AB= 6cm và điểm O thuộc đoạn thẳng AB sao cho OA= 4cm. Đường thẳng xy qua O. Lấy C thuộc tia Ox, OC= 3cm. Lấy D thuộc tia Oy, sao cho AD//BC. Tính OD và CD
Bài 4:Cho tam giác ABC có AB = 6cm, AC = 8cm , BC = 10cm. Lấy điểm D trên AB sao cho AD = 2cm. Qua D vẽ đường thẳng song song với BC cắt AC tại E. 1) Tính AE. 2) Qua E vẽ đường thẳng song song với AB và cắt BC tại F. Tính BF, DE. 3) Tính và so sánh các tỉ số : AD/AB , AE/AC , DE/BC
Cho tam giác OAC có OA=2,5 OC=3. Từ A đến O, kéo dài thành đoạn thẳng AB=10. Đg thẳng qua B và song song với AC cắt CO kéo dài tại D. Tính OD
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE a ) Chứng minh : BA DC b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ; c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ; d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD