Cho tam giác nhọn ABC có độ dài AB, AC, BC là các số nguyên liên tiếp (AB,AC<BC). CMR: Đường cao BH chia cạnh AC thành 2 đoạn có hiệu độ dài là 4
Cho tam giác nhọn ABC có độ dài AB, AC, BC là các số nguyên liên tiếp (AB,AC<BC). CMR: Đường cao BH chia cạnh AC thành 2 đoạn có hiệu độ dài là 4
Cho tam giác ABC có độ dài 3 cạnh là a, b, c thỏa mãn: \(\dfrac{ab}{b+c}+\dfrac{bc}{c+a}+\dfrac{ac}{a+b}=\dfrac{ac}{b+c}+\dfrac{ab}{c+a}+\dfrac{bc}{a+b}\). Chứng minh: Tam giác ABC cân
Cho tam giác ABC có độ dài 3 cạnh là a, b, c thỏa mãn: \(\dfrac{ab}{b+c}+\dfrac{bc}{a+c}+\dfrac{ac}{a+b}=\dfrac{ac}{b+c}+\dfrac{ab}{a+c}+\dfrac{bc}{a+b}\). Chứng minh tam giác ABC cân
Cho tam giác ABC có AB=12cm , AC=15cm, BC=q6cm. Trên cạnh AB lấy điểm M sao cho AM=3cm. Từ M kẻ đường thẳng song song với BC cắt AC tại N, cắt trung tuyến AI tại K.
a/ Tính độ dài MN
b/ Chứng minh K là trung điểm của MN
c/ Trên tia MN lấy điểm P sao cho MP=8cm. Nối PI cắt AC tại Q. Chững minh tam giác QIC đồng dạng với tam giác AMN
51.387 lượt xem
TrướcSau
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E
1. Chứng minh rằng △CDE~△AHB
2. Gọi M là trung điểm của đoạn BE. Chứng minh rằng △BHM~△BEC. Tính số đo góc AHM
3. Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC)<!--[if gte ms Equation 12]>HD HD
cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Trên tia HD lấy điểm C sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
1) CMR: tam giác ADC và tam giác BEC đồng dạng. Tính độ dài đoạn BE theo AB=m.
2) Gọi M là trung điểm của đoạn BE. CMR: tam giác BHM và tam giác BEC đồng dạng và HM vuông góc với AD.
3) Tia Am cắt BC tại G. CMR: GB/BC=DH/AH+HC
Cho tam giác ABC đều có O là trung điểm cạnh BC. Vẽ góc xOy=60 độ sao cho các tia Ox, Oy cắt các cạnh AB, AC lần lượt tại E, F. Chứng minh rằng:
a) BC2 = 4. BE . FC
b) EO là phân giác góc BEF