Cho tam giác ABC nhọn có ba đường cao AD, BE, CF cắt nhau tại H. Chứng minh:
a) HA. HD = HB. HE = HC. HF
b) AH.AD + BH.BE + CH.CF = \(\dfrac{1}{2}\)(AB2 + BC2 + CA2)
c) H là giao điểm 3 đường phân giác của tam giác DEF.
Cho tam giác ABC nhọn có 3 góc nhọn , các đường cao AD ; BE ; CF cắt nhau tại H . Chứng minh :
a. AE.AC = AF.AB
b.tam giác AEF đd tam giác ABC ; tam giác DBF đd tam giác DEC
c. tam giác HEF đd tam giác HBC
d.chứng minh:BF.BA+CE.CA=BC^2
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H
a) CM : \(\Delta\)AEB và \(\Delta AFC\) đồng dạng và AF.AB = AE.AC
b) CM : góc BAD = góc BEF
c) Gọi AI là tia phân giác của góc BAC, tia AI cắt FE tại O. CM : IB.OF = IC.OE
cho Tam giác ABC có 3 góc nhọn và AB<AC. các đường cao AD, BE, CF cắt nhau tại H.
a) chứng minh tam giác ACD đồng dạng tam giác BCE
b) chứng minh HB.HE=HC.HF
c) cho AD=12cm ; BD = 5cm ; CD = 9cm. tính AB và HC
△ABC có 3 góc nhọn.3 đường cao AD,BE,CF cắt nhau tại H
a)△AEF đồng dạng △ABC
b)Biết ∠A=60.S AEF=40cm^2.Tính S ABC
Cho tam giác ABC nhọn, có 3 đường cao AD, BE, CF cắt nhau tại H. Gọi M, N là
trung điểm của BC và AH. Gọi I là giao điểm của MN và EF,đường phân giác góc A cắt MN tại K.
a)CMR: MN vuông góc với EF
b)CMR: NHI = HMI
c) CMR: HK là phân giác góc EHC.
Cho tam giác abc đường cao AD BE CF cắt nhau tại H. Hc =6 hb=4. Tính tỉ số S fhe/S bhc
Cho tam giác ABC có 3 góc nhọn ( AB<AC) . Các đường cao AD, BE, CF cắt nhau tại H .
a/ Chứng minh: tam giác AEB đồng dạng tam giá AFC, từ đó suy ra AF.AB = AE.AC
b/ Chứng minh: góc AEF = góc ABC
c/ Vẽ DM vuông góc với AB tại M.Qua M vẽ đường thẳng song song với EF cắt AC tại N. Chứng minh: DN vuông góc với AC .
d/ Gọi I là trung điểm của HC. Chứmg minh tam giác FAC đồng dạng với tam giác FHB và FA.FB = FI2 - El2