a: Xét ΔDGI có
GH là đường cao
GH là đường trung tuyến
Do đó: ΔDGI cân tại G
hay GD=GI
b: Xét ΔEID có
EH là đường cao
EH là đường trung tuyến
Do đó: ΔEID cân tại E
mà EG là đường trung tuyến
nên EG là đường phân giác
a: Xét ΔDGI có
GH là đường cao
GH là đường trung tuyến
Do đó: ΔDGI cân tại G
hay GD=GI
b: Xét ΔEID có
EH là đường cao
EH là đường trung tuyến
Do đó: ΔEID cân tại E
mà EG là đường trung tuyến
nên EG là đường phân giác
Cho tam giác DEF có E =900 , tia phân giác DH . Qua H kẻ HI vuông góc DF tại I . Chứng minh
a) tam giác DHE = tam giác DHI
b) DH là đường trung trực của EI
c) EH bé hơn HF
d) gọi K là giao điểm DE và IH .chứng minh DH vuông góc KF
Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt BC tại I. Trên cạnh AC lấy điểm D sao cho AD = AB.
a. Chứng minh BI = DI
b. Gọi K là giao điểm của Di và tia AB. Chứng minh tam giác BKI = tam giác DCI
c. Kẻ BH vuông góc với KC. Chứng minh BH song song AI.
Cho tam giác ABC cân tại A ( AB>BC ).Trên tia đối của tia CA lấy điểm D sao cho CD=CA. Kẻ AH vuông góc BC tại H, kẻ DK vuông góc với đường thẳng BC tại K. Chứng minh : a) Tam giác AHC=tam giác DKC b)KC=1/2 BC c)Trên tia đối của tia BC lấy điểm M và trên tia CD lấy điểm N sao cho BM=CN=AB-BC, CHo biết ^BAC=40độ. Tính ^ANM
Cho Tam Giác ABC vuông tại A, đường phân giác của góc B cắt AC tại D.
Vẽ DH vuông góc với DC
a) Chứng minh: Tam giác ABD=HBD
b) Trên tia đối của AB lấy điểm K sao cho AK = HC. Chứng minh ba điểm K, D, H thẳng hàng.
Cho Δ ABC vuông tại A có góc B=300. Tia phân giác góc C cắt AB tại D. Kẻ DH vuông góc với BC (H ϵ BC).
a) C/m Δ BCD là tam giác cân và Δ ACH là tam giác đều.
b) Khi AB = 5cm. Tính BC, AC
c) Gọi I là giao điểm của HD và AC. C/m Δ IBC là tam giác đều và IC // với AH
Help mik các bạn ơi, please!
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BD=AB. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh: tam giác BAE = tam giác BDE. Suy ra: AE = ED.
b) Gọi F là giao điểm của tia DE và tia BA. Chứng minh: tam giác FEC cân.
c) Gọi K là trung điểm của FC. Chứng minh: B, E, K thẳng hàng.
Cho tam giác ABC cân tại A. Gọi H là trung điểm BC. Từ H kẻ HD vuông góc AB tại D và HE vuông góc với AC tại E. a/ Chứng minh: tam giac HDB = tam giacHEC b/ Chứng minh : AD=AE. c/ Qua A kẻ đường thẳng xy song song BC, tia HD cắt xy tại M, tia HE cắt xy tại N. Chứng minh tam giác HMN là tam giác cân?
giup tui voii tks nhieuu
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy D, trên tia đối của tia CBlấy điểm E sao cho BD=CE. Kẻ BH vuông góc với AD, CK vuông góc với AE. 2 đường thẳng hb và kc cắt nhau tại o.Chứng minh a, tam giác Abd=tam giác ace; b,tam giác ade cân; c,tam giác dhb= tam giác ekc;d.tam giác boc cân;e.oa là tia phân giác của góc boc