Chứng minh
a) tam giác ACN đồng dạng tam giác MBA
tam giác MBC đồng dạng tam giác BCN
b) Tứ giác BMEF nội tiếp
c) Đường thẳng EF luôn luôn đi qua 1 điểm cố định khi d thay đổi nhưng đi qua A
cho đường tròn (O) , đường kính AB và 1 điểm di chuyển cố định trên đường kính ( C khác A , B ) , M là 1 điểm di động trên đường tròn ( M khác A , B ) . qua M có đường thẳng vuông góc với CM cắt tiếp tuyến của ( O ) tại A , B lần lượt tại D và E CM : a ) tứ giác ACMD nội tiếp . b tứ gíác BCME nội tiếp C ) chứng minh tam giác DAC đồng dạng với tam giác CBE d ) so sánh góc AMC và góc BME
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn (O) có bán kính R=3cm. Các tiếp tuyến với (O) tại B và C cắt nhau tại D.
1. Chứng minh tứ giác OBDC nội tiếp đường tròn
2. Gọi M là giao điểm của BC và OD. Biết OD = 5cm. Tính diện tích tam giác BCD
3. Kẻ đường thẳng d đi qua D và song song với đường tiếp tuyến với (O) tại A, d cắt các đường thẳng AB, AC lần lượt tại P và Q. Chứng minh AB.AP = AQ.AC
4. Chứng minh ∠PAD = ∠MAC
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O . Đường thẳng vuôn . góc với BC tại B cắt ( O ) tại M và cắt đường thẳng AC tại D . Gọi N là điểm đối xứng của M qua BC , AB cắt CN tại E . a . Chứng minh rằng : ba điểm M , 0 , C thẳng hàng . b . Chứng minh DÁ . DC = DMDB c . Chứng minh bốn điểm A , D , E , N thuộc một đường tròn .
Cho đường tròn (O)(O) có ABAB là một dây cung cố định không đi quá OO . Từ một điểm MM bất kì trên cung lớn AB ( M ko trùng A và B ) kẻ dây cung MN vuông góc với AB tại H . Gọi MQ là đường cao của tam giác AMN. a)a) Chứng minh tứ giác AMHQ nội tiếp đường tròn b)b) Gọi I là giao điểm của AB và MQ chứng minh tam giác IBM cân .. c)c) Kẻ MP vuông góc với BN tại P . Xác định vị trí của M sao cho MQ . AN + MP . BN đạt giá trị lớn nhất
Cho hai đường tròn (O) và (O )cắt nhau tại A và B. Vẽ AC, AD thứ tự là đường kính của hai đường tròn (O) và (O )chứng minh ba điểm C, B, D thẳng hàng. b) Đường thẳng AC cắt đường tròn (O )tại E; đường thẳng AD cắt đường tròn (O) tại F (E, F khác A). Chứng minh 4 điểm C, D, E, F cùng nằm trên một đường tròn. c) Một đường thẳng d thay đổi luôn đi qua A cắt (O) và (O ).. ứ tự tại M và N. Xác định vị trí của d để CM + DN đạt giá trị lớn nhất.
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A, BC là tiếp tuyến chung ngoài. B ∈ (O), C ∈ (O’). Tiếp tuyến chung trong tại A cắt BC ở điểm M. Gọi E là giao điểm của OM và AB, F là giao điểm của O’M và AC. Chứng minh rằng a) Tứ giác AEMF là hình chữ nhật. b) ME.MO = MF.MO’ c) OO’ là tiếp tuyến của đường tròn có đường kính là BC. d) BC là tiếp tuyến của đường tròn có đường kính là OO’.
Cho đường tròn (O). AB là dây cung cố định không đi qua tâm của (O). Gọi I là trung điểm của dây cung AB, M là 1 điểm trên cung lướn AB( M không trùng A,B) Vẽ đường tròn (O') đi qua M và tiếp xúc với đường thẳng AB tại A. Tia MI cắt đường tròn (O') tại điểm thứ hai N, và cắt đường tròn (O) tại điểm thứ hai C.
1: chứng minh tâm giác BIC= tam giác AIN. Từ đó chứng minh tứ giác ANBC là hình bình hành
2. Chứng minh BI là tiếp tuyến đường tròn ngoại tiếp tam giác BMN
3 Xác định vị trí điểm M trên cung lớn AB để diện tích tứ giác ANBC lớn nhất
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn (O) có bán kính R=3cm. Các tiếp tuyến với (O) tại B và C cắt nhau tại D.
1. Chứng minh tứ giác OBDC nội tiếp đường tròn
2. Gọi M là giao điểm của BC và OD. Biết OD = 5cm. Tính diện tích tam giác BCD
3. Kẻ đường thẳng d đi qua D và song song với đường tiếp tuyến với (O) tại A, d cắt các đường thẳng AB, AC lần lượt tại P và Q. Chứng minh AB.AP = AQ.AC
4. Chứng minh ∠PAD = ∠MAC
<Em chỉ chưa biết làm 4. thôi, nếu mọi người ngại ghi dài thì chỉ cần viết 4. ra cho em với thôi nha ^^ Cảm ơn nhiều <3 >
Mình làm được hết rồi còn câu e nữa thôi, giúp mình với!!!!
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Hai đường cao BE và CF cắt nhau tại H. Vẽ đường kính AD của đường tròn (O).
a) Chứng minh BFEC là tứ giác nội tiếp và AHBC. (1.0 điểm)
b) Chứng minh HD đi qua trung điểm của BC. (1.0 điểm)
c) Gọi K là giao điểm của EF và AD. Chứng minh: AFK đồng dạng ADB. (0.5 điểm)
d) Gọi M,N lần lượt là giao điểm của EF với đường tròn (O). Chứng minh AMN cân. (0.5 điểm)
e) Chứng minh AH.BC + BH.AC + CH.AB = 4StamgiacABC (0.5 điểm)