Bài 30. Đa giác đều

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho tam giác đều ABC nội tiếp đường tròn (O) như Hình 9.54. Phép quay ngược chiều 60° tâm O biến các điểm A, B, C lần lượt thành các điểm D, E, F. Chứng minh rằng ADBECF là một lục giác đều.

datcoder
24 tháng 10 lúc 17:32

Vì lục giác ADBECF nội tiếp đường tròn (O) nên \(OA = OB = OC = OD = OE = OF\).

Vì phép quay ngược chiều \({60^o}\) tâm O biến các điểm A, B, C lần lượt thành các điểm D, E, F nên \(\widehat {AOD} = \widehat {BOE} = \widehat {COF} = {60^o}\).

Vì tam giác ABC đều nên AO, BO là các đường phân giác của tam giác ABC.

Ta có: \(\widehat {BAO} = \widehat {ABO} = \frac{1}{2}\widehat {ABC} = {30^o}\)

Tam giác OAB có: \(\widehat {BOA} = {180^o} - \widehat {BAO} - \widehat {ABO} = {120^0}\).

Suy ra: \(\widehat {BOD} = \widehat {AOB} - \widehat {AOD} = {60^o}\)

Tam giác AOD cân tại O (do \(OA = OD\)), mà \(\widehat {AOD} = {60^o}\) nên tam giác DAO đều.

Do đó, \(DA = AO = OD,\widehat {DAO} = \widehat {ADO} = {60^o}\)

Tương tự ta có: \(DO = OB = BD,\widehat {ODB} = \widehat {OBD} = {60^o}\), \(EO = OB = BE,\widehat {OEB} = \widehat {OBE} = {60^o}\), \(EO = OC = CE,\widehat {OEC} = \widehat {OCE} = {60^o}\), \(FO = OC = CF,\widehat {OFC} = \widehat {OCF} = {60^o}\), \(FO = OA = AF,\widehat {OFA} = \widehat {OAF} = {60^o}\)

Do đó, \(AD = BD = BE = EC = FC = FA\) và \(\widehat {DAF} = \widehat {AFC} = \widehat {FCE} = \widehat {CEB} = \widehat {EBD} = \widehat {BDA} = {120^o}\)

Vậy ADBECF là lục giác đều.