Bài 28. Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho tam giác đều ABC nội tiếp đường tròn (O). Biết rằng đường tròn (O) có bán kính bằng 3 cm. Tính diện tích tam giác ABC.

datcoder
24 tháng 10 lúc 17:03

Vì tam giác ABC đều nội tiếp đường tròn (O) nên O là trọng tâm, trực tâm của tam giác ABC.

Gọi H là giao điểm của AO và BC nên AH là trung trực đồng thời là đường cao, đường trung tuyến trong tam giác đều ABC.

Do đó: \(OA = \frac{{BC\sqrt 3 }}{3} \Rightarrow BC = \sqrt 3 OA = 3\sqrt 3 \left( {cm} \right)\)

Vì O là trọng tâm của tam giác ABC, AH là đường trung tuyến của tam giác ABC nên \(AH = \frac{3}{2}OA = \frac{3}{2}.3 = \frac{9}{2}\left( {cm} \right)\)

Diện tích tam giác ABC là:

\(S = \frac{1}{2}AH.BC = \frac{1}{2}.\frac{9}{2}.3\sqrt 3  = \frac{{27\sqrt 3 }}{4}\left( {c{m^2}} \right)\)