cho tam giác DEF có DE bé hớn DF tia phân giác của góc D cắc cạnh EF tại M trên cạnh DF lấy điểm N sao cho DE=DN chứng minh a tam giác DEM bằng tam giác DNM chứng minh b góc DMF lớn hơn góc DME c gọi K là trung điểm của EF trên tia đới của tia KD lấy G sao cho KG=KD chứng minh DF+FG lớn hơn 2FK
Cho tam giác DEF cân tại D. Phân giác góc E và góc F cắt cạnh DF và DE lần lượt ở M và N. EM cắt FN ở I a) chứng minh tam giác DEF cân tại D b)tam giác ENF=∆FME c)DI là phân giác góc I
Bài 1: Cho tam giác ABC có góc A = 120 độ, đường phân giác AD (D thuộc BC). Vẽ DE vuông góc với AB, DF vuông góc với AC.
a) Chứng minh tam giác DEF đều.
b) Từ C kẻ đường thẳng song song với AD cắt AB tại M. CM tam giác AMC đều.
c. CM MC vuông góc với BC.
d. Tính DF và BD biết AD= 4cm.
Cho ΔDEF vuông tại D ( DE<DF) và các điểm M thuộc cạnh DF, H thuộc cạnh EF sao cho MH vuông góc với EF và MH=HE. Chứng minh DH là tia phân giác của góc D
Cho tam giác DEF có DE = DF = 5 cm, EF = 6 cm. Gọi I là trung điểm của EF
a) Chứng minh tam giác DEI = tam giác DFI
b) Tính độ dài đoạn DI
c) Kẻ IH vuông góc với DE (H thuộc DE). Kẻ IJ vuông góc với DF (J thuộc DF). Chứng minh tam giác IHJ là tam giác cân
d) Chứng minh HJ // EF
Cho tam giác MNP cân tại M ( góc M <90 độ). Kẻ NH vuông góc với MP ( H thuộc MP), PK vuông góc với MN ( K thuộc MN). NH và PK cắt nhau tại E.
a) chứng minh tam giác NHP= tam giác PKN.
b) chứng minh tam giác ENP cân.
c) Chứng minh ME là đường phân giác của góc NMP.
Cho tam giác MNP cân tại M ( góc M <90 độ). Kẻ NH vuông góc với MP ( H thuộc MP), PK vuông góc với MN ( K thuộc MN). NH và PK cắt nhau tại E.
a) chứng minh tam giác NHP= tam giác PKN.
b) chứng minh tam giác ENP cân.
c) Chứng minh ME là đường phân giác của góc NMP.
Cho tam giác ABC cân tại A . Kẻ BD vuông góc với đường thẳng AC tại D . Lấy điểm E bất kì trên cạnh BC ( E khác B , khác C ) . Kẻ EF , EG , EH lần lượt vuông góc với AB ,AC , BD .
1. Chứng minh rằng tam giác HBE bằng tam giác FEB
2. Chứng minh rằng EF + EG = BD
3. Trên tia đối của tia CA , lấy điểm K sao cho KC = BF ; BC cắt FK tại I . Chứng minh rằng I là trung điểm của FK
4. Nêu cách xác định vị trí của điểm E trên BC để tam giác EGH vuông cân
Giúp mk câu 3;4 thôi ạ!
Cho tam giác ABC cân tại a kẻ BH vuông góc với AC ck vuông góc với AB H thuộc AC K thuộc AB Chứng minh tam giác akh là tam giác cân Gọi I là giao điểm của AH và ckAI cắt BC tại MCChứng minh rằng im là phân giác của byc Chứng minh HK song song với BC