Bài 4: Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho tam giác AOB có OA = OB. Tia phân giác của góc O cắt AB ở D

Chứng minh rằng :

a) DA = DB

b) \(OD\perp AB\)

Thu Trang
11 tháng 6 2017 lúc 15:30

a) Xét \(\Delta AOD \)\(\Delta BOD \) có:

\(\widehat{O_1}=\widehat{O_2}\) (gt)

OD là cạnh chung

OA = OB (gt)

Vậy \(\Delta AOD = \Delta BOD\) (c.g.c)

=> DA = DB (2 cạnh tương ứng)

b) Vì \(\Delta AOD = \Delta BOD\) nên \(\widehat{ADO}=\widehat{BDO}\) (2 góc tương ứng) (1)

Ta có: \(\widehat{AOD}\) kề bù với \(\widehat{BOD}\) nên \(\widehat{AOD}+\widehat{BOD}=180^0\) (2)

Từ (1) (2) suy ra: \(\widehat{AOD}=\widehat{BOD}=\dfrac{180^0}{2}=90^0\)

=> OD \(\perp\) AB tại D.

Nguyen Thuy Hoa
7 tháng 7 2017 lúc 10:26

Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

Nguyễn Bảo Trâm
11 tháng 11 2019 lúc 20:48

a) Xét ΔAOD∆AODΔBOD∆BOD, ta có:

OA=OBOA=OB (gt)

ˆAOD=ˆBODAOD^=BOD^ (vì ODOD là tia phân giác góc OO)

ODOD cạnh chung

⇒ΔAOD=ΔBOD⇒∆AOD=∆BOD (c.g.c)

⇒DA=DB⇒DA=DB (hai cạnh tương ứng)

b) ΔAOD=ΔBOD∆AOD=∆BOD (chứng minh trên)

⇒ˆD1=ˆD2⇒D1^=D2^ (hai góc tương ứng)

Ta có: ˆD1+ˆD2=180∘D1^+D2^=180∘ (hai góc kề bù)

⇒ˆD1=ˆD2=90∘⇒D1^=D2^=90∘

Vậy OD⊥ABOD⊥AB.

Khách vãng lai đã xóa
Huỳnh Thảo Nguyên
20 tháng 11 2019 lúc 21:21

Về hình vẽ: đã vẽ rồi nhưng ko bik sao để đăng nên mik chỉ đăng bài làm thôi nha!

a). C/m DA=DB?

Xét ΔAOD và ΔBOD có:

OD: cạnh chung (gt).

Góc O1= góc O2 (OD là tia p/g góc O)

OA=OB (gt).

⇒DA=DB nên ΔAOD=ΔBOD.

b). C/m OD⊥AB:

ΔAOD=ΔBOD nên góc D1 = góc D2 (2 góc tương ứng).

Ta có: góc D1+ góc D2= 180 độ.

Vì D là tia p/g nên 180/2= 90 độ.

Nên: góc D1= góc D2 = 90 độ.

⇒OD⊥AB.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Đỗ Minh Khôi
Xem chi tiết
Trần Linh Chi
Xem chi tiết
Đoàn Vũ Hải Yến
Xem chi tiết
Phạm Chi
Xem chi tiết
Nguyễn KHánh huyền
Xem chi tiết
HUHU
Xem chi tiết
Hien
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Tuệ Nhiên Nguyễn
Xem chi tiết