Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC
a) Tính độ dài OC; CD
b) Chứng minh rằng FD.BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Cm: OM = ON.
Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
\(\Rightarrow\dfrac{AO}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{DC}\Rightarrow\dfrac{12}{OC}=\dfrac{9}{3}=\dfrac{18}{DC}\) ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
\(\Rightarrow\dfrac{FD}{AD}=\dfrac{FC}{CB}\Rightarrow FD.BC=FC.AD\) ( ĐPCM )
c) Theo (1), ta đã có:
\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\Rightarrow\dfrac{OA}{OA+OC}=\dfrac{OB}{OB+OD}\Rightarrow\dfrac{OA}{AC}=\dfrac{OB}{BD}\) (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) ( Hệ quả định lý Ta - lét ) (3)
CMTT : \(\dfrac{ON}{DC}=\dfrac{OB}{DB}\) (4)
Từ (2), (3) và (4) => \(\dfrac{MO}{DC}=\dfrac{NO}{DC}\Rightarrow MO=NO\) ( ĐPCM )