a.
AMx = ABC (gt)
mà 2 góc này ở vị trí đồng vị
=> Mx // BC
b.
CNy = NCB (gt)
mà 2 góc này ở vị trí so le trong
=> Ny // BC
mà BC // Mx (theo câu a)
=> Ny // Mx
a.
AMx = ABC (gt)
mà 2 góc này ở vị trí đồng vị
=> Mx // BC
b.
CNy = NCB (gt)
mà 2 góc này ở vị trí so le trong
=> Ny // BC
mà BC // Mx (theo câu a)
=> Ny // Mx
gọi d là giao điểmcủa Mx và AC lấy điểm N nằm giữa CD Trên cùng 1 nửa mặt phẳng bờ AC ko chứa điểm B vẽ Ny sao cho góc CNy=góc c
Cho tam giác ABC , trên cạnh AB lấy điểm M.Trên nửa mặt phẳng bờ AB có chứa điểm C và tia Mx sao cho \(\widehat{AMx}\)=\(\widehat{B}\)
a,CMR :Mx//BC,Mx cắt Ac
b,gọi D là giao điểm của Mx và Ac . lấy Nnamf giữa C và D. tên nửa mặt phẳng bờ AC không chứa B vẽ tia Ny sao cho \(\widehat{CNy}\)=\(\widehat{C}\).cHỨNG MINH RẰNG :Mx//Ny
Cho tam giác ABC có A nhọn . Trên nửa mặt phẳng bờ AC không chứa C . Vẽ tia Ax vuông góc với BC . Trên tia Ax lấy điểm D sao cho AD =AB . Trên nửa Mặt phẳng bờ AC không chứa điểm B. Vẽ tia Ay vuông góc với AC . Trên tia Ax lấy điểm E sao cho AE = AC . Gọi M là trung điểm của BC .
Chứng minh rằng : AM = \(\frac{1}{2}\) DE
Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD=AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy điểm E sao cho AE=AC. Chứng minh rằng: \(AM=\frac{DE}{2}\)
Cho tam giác ABC , M là trung điểm của BC . TRên nửa mặt phẳng không chứa C có bờ AB , vẽ tia Ax vuông góc với AB . Trên tia đó lấy điểm D sao cho AD = AB . Trên nửa mặt phẳng không chứa B có bờ AC , vẽ tia Ay vuông góc với AC , trên tia đó lấy điểm E sao cho AE = AC . Chứng minh rằng :
a, AM = \(\frac{DE}{2}\)
b, AM vuông góc với DE
Cho tam giác ABC , M là trung điểm BC . Trên nửa mặt phẳng không chứa điểm C có bờ AB, vẽ tia Ax vuông góc AB . Trên tia đó lâý điểm D sao cho AD = AB . Trên nửa mặt phẳng không chứa B có bờ AC vẽ tia Ay vuông góc AC . Trên tia đó lấy điểm E sao cho AE = AC . Chứng minh:
a)AM = \(\frac{DE}{2}\)
b) AM vuông góc DE
c) DC vuông góc BE
1.cho tam giác ABC có góc A < 90 độ . trên nửa mặt phẳng bờ AB ko chứa điểm C ; vẽ tia Ax vuông góc với AB . trên tia Ax lấy điểm D sao cho AD = AB . trên nửa mặt phẳng bờ AB ko chứa điểm B vẽ tia Ay vuông AC , trên đó lấy điểm E sao cho AE = AC.gọi M là trung điểm BC.chứng minh AM=1/2DE
1.Cho tam giác ABC có AB = AC, kẻ BD vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a. BD = CE
b. tam giác OEB = tam giác ODC
c. AO là tia phân giác của góc BAC
2.Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C bờ là AB vẽ AD vuông góc AB và AD = AB. Trên nửa mặt phẳng không chưa B bờ là AC vẽ AE vuông góc AC và AE = AC. Lấy F thuộc tia đối của tia MA cho MF = MA. CMR:
a. BF song song AC
b. DE = 2AM
c. AM vuông góc DE
Cho tam giác ABc. Trên nửa mặt phẳng bờ BC có chứa điểm A vẽ tia Bx vuông góc với BC, trên tia Bx lấy điểm D sao cho BD=BC. trên nửa mặt phẳng bờ AB có chứa điểm C vẽ tia By vuông góc với AB, trên By lấy điểm E sao cho BE=BA. So sánh AD và CE.
Giúp mình nhanh nhé, mình đang cần gấp ! Thanks !