a) Xét ΔAEB và ΔDEC có
AE=DE(gt)
\(\widehat{AEB}=\widehat{DEC}\)(hai góc đối đỉnh)
EB=EC(E là trung điểm của BC)
Do đó: ΔAEB=ΔDEC(c-g-c)
⇒\(\widehat{ABE}=\widehat{DCE}\)(hai góc tương ứng)
mà \(\widehat{ABE}\) và \(\widehat{DCE}\) là hai góc ở vị trí so le trong
nên AB//DC(Dấu hiệu nhận biết hai đường thẳng song song)
b) Ta có: AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: EB=EC(E là trung điểm của BC)
nên E nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AE là đường trung trực của BC
hay AE⊥BC(đpcm)
c) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
⇒\(\widehat{BAC}=180^0-2\cdot\widehat{ABC}\)(Số đo của góc ở đỉnh trong ΔABC cân tại A)
hay \(\widehat{BAC}=180^0-2\cdot45^0=90^0\)
Vậy: Khi ΔABC có thêm điều kiện \(\widehat{BAC}=90^0\) thì \(\widehat{ABC}=45^0\)