cho tam giác ABC cân tại A và AB=AC.trên các cạnh AB và AC lấy tương ứng hai điểm D và E sao cho AD=AE.từ A và B kẻ đường vuông góc vs BE cắt BC tại M và N. tia ND cắt CA ở I.cm:a, A là trung điểm của CI b, CM=MN
Cho tam giác ABC,trên tia đối của tia AB lấy điểm D và trên tia đối của tia AC lấy E sao cho AD = AB ; AE=AC
a ) Chứng minh DC = DE
b ) chứng minh BC // DE
c ) đường thẳng xy qua A cắt BC ; DE lần lượt tại M và N. Chứng minh A là trung điểm của MN.
cho tam giác ABC cân tại A. trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE=BD. các đường thẳng vuông góc với bc kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a, gọi I là giao điểm của MN và BC, đường thẳng vuông góc với MN tại I tại đường thẳng AH tại K (H là trung điểm của BC) cmr: tam giác ABC cân.
c, cmr CK \(\perp\)AN.
Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.
Cho tam giác ABC vuông tại A (AB<AC). Trên cạnh AC lấy điểm D sao cho AB = AD. Trên tia đối của AB lấy điểm E sao cho AC=AE.
a)CM:Tam giác ABC = TAM GIÁC ADE
b)Gọi m,n lần lượt là trung điểm của BC và DE. CM: AM=AN
c)Tính số góc đo AMN
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy D sao cho AD = AB. Tia AD của góc A cắt BC tại E.
a ) chứng minh tam giác ABE = tam giác ADE
b ) gọi giao điểm của BD và AE là H
c ) Qua C kẻ đường thẳng song song với BD,cắt AD tại F. Chứng minh 3 điểm F;E;D thẳng hàng
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy D sao cho AD = AB. Tia AD của góc A cắt BC tại E.
a ) chứng minh tam giác ABE = tam giác ADE
b ) gọi giao điểm của BD và AE là H
c ) Qua C kẻ đường thẳng song song với BD,cắt AD tại F. Chứng minh 3 điểm F;E;D thẳng hàng
Bài 5: Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC tại H.
a/ Chứng minh tam giác AHB bằng tam giác AHC và BH = HC.
b/ Cho biết AB = 13cm; BC = 10cm. Vẽ trung tuyến BM của tam giác ABC cắt AH tại G. Tính AH và AG.
c/ Vẽ trung tuyến CN của tam giác ABC. Chứng minh MN song song BC.
d/ Trên cạnh AB lấy điểm D (D nằm giữa N và B) và trên tia đối tia CA lấy điểm E sao cho BD = CE. Đường thẳng qua C song song với DE và đường thẳng qua D song song với AC cắt nhau tại F. Chứng minh tam giác DFB cân và FC > BC
Cho tam giác ABC có góc A=90 độ và AB=AC. Trên cạnh AB, AC lấy hai điểm D và E sao cho AD = AE. Từ A và D kẻ đường vuông góc với BE cắt BC tại M và N. Tia ND cắt CA ở I. Cm:
a, A là trung điểm của CI
b, CM=MN