
∆ABC vuông tại B => AB⊥BCAB⊥BC nên AB là đường cao từ đỉnh A.
⇒CB⊥AB⇒CB⊥AB nên CB là đường cao kẻ từ đỉnh C.
B là giao điểm của 2 đường cao AB và CB. Vậy B là trực tâm của ∆ABC.

∆ABC vuông tại B => AB⊥BCAB⊥BC nên AB là đường cao từ đỉnh A.
⇒CB⊥AB⇒CB⊥AB nên CB là đường cao kẻ từ đỉnh C.
B là giao điểm của 2 đường cao AB và CB. Vậy B là trực tâm của ∆ABC.
Cho tam giác ABC cân tại A, đường cao AH. Kẻ HM vuông góc AB tại M; HN vuông góc AC tại N.
1. Chứng minh: BH = CH.
2. Chứng minh: AMN cân
3. Gọi P là giao điểm của MH với AC, Q là giao điểm của NH với AB, I là trung điểm của PQ. Chứng minh ba điểm N; H; I thẳng hàng.
Cho ΔABC vuông cân tại A , biết AB=AC=8cm
a) Tính BC
b) Từ A kẻ AM⊥BC. CMR: M là trung điểm BC
c) Từ M kẻ MN⊥AC. ΔAMN là tam giác vuông cân
d) Trên tia đối của tia MN lấy điểm E sao cho EN=NM..
Cho ΔABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE.
a) CM: BE=CD
b) CM: DE//BC
c) Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
Cho tam giác ABC cân tại A có góc A = 40 độ . Đường trung trực của AB cắt BC tại D . Trên tia đối tia AD lấy điểm E sao cho AE = CD a, CM tam giác BEC = tam giác CDA b, Tính các gó của tam giác BDE
a) Cho tam giác ABC có góc A bằng 70 độ góc B bằng 30 độ, góc C bằng 80 độ. Sắp xếp các cạnh của ∆ABC theo thứ tự từ nhỏ đến lớn.
b) Cho đoạn thẳng MN có độ dài bằng 6cm. Vẽ đường trung trực d của đoạn thẳng MN.
Cho ΔABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Phân giác góc B cắt AC tại D.
a/ Chứng minh ΔABD=ΔEBD và DE⊥BC.
b/ Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK=EC.
c/ Gọi M là trung điểm của KC. Chứng minh ba điểm B,D,M thẳng hàng.
Cho tam giác ABC vuông tại A; đường phân giác BE. Kẻ EH vuông góc với BC ( H thuộc BC). gọi K là giao điểm của AB và HE , chứng minh rằng :
a) Tam giác ABE = tam giắc HBE
b) Chứng minh BE là đường trung trực của đoạn thẳng AH
c) EK = EC
d) AE < EC