Áp dụng định lý Pytago :
\(BC=\sqrt{AC^2-AB^2}=\sqrt{61^2-60^2}=11\)
Áp dụng định lý Pytago :
\(BC=\sqrt{AC^2-AB^2}=\sqrt{61^2-60^2}=11\)
Cho tam giác abc cân tại b . Kẻ bh vuông góc ac (h thuộc ac) Cm a) tam giác abc = tam giác cbh b) cho bh = 4 cm, ac = 6 cm . Tính bc =? c) kẻ he vuông góc ab, hf vuông góc bc . Cm be= bf
cho tam giác ABC vuông tại A biết Ab phần AC = 3 phần 4 và BC=100cm. Tính AB, AC
Cho tam giác ABC vuông tại B. Biết AB=3cm, BC=4cm. Câu a: tính AC. Câu b: kẻ tia phân giác CK ( K thuộc AB ) , kẻ KH vuông góc với AC tại H. Chứng minh tam giác BCK= tam giác HCK. Câu c: Gọi M là giao điểm của đường thẳng HK và CB, chứng minh AK=MK
Cho tam giác ABC vuông tại A biết AB=3cm, AC=5cm
a, Tính BC
b, Trên tia đối của tia AB lấy điiemr D sao cho AD=AB. Chứng minh tam giác BCD là tam giác cân
c, Vẽ AH vuông góc với BC, AK vuông góc với DC ( H thuộc BC ) ( K thuộc DC ). Chứng minh tam giác AHC = tam giác AKD
Chứng minh HK song song BD
Cho tam giác abc có AB=6cm;AC=8cm;Bc=10cm. chứng tỏ tam giác ABC vuông tại A,Tia phân giác của góc B cắt AC tại D, kẻ DE vuông góc với BC tại E
Cho tam giác ABC cân tại A. Tia phân giác góc BAC cắt cạnh BC tại M. ME vuông góc với AB tại E, MF vuông góc với AC tại F Cho AB=AC=13cm , BC=15cm. Tính AM
Cho tam giác ABC vuông tại A biết AB = 8 cm AC ,bằng 20 cm a so sánh các góc của tam giác ABC b Trên tia nối của tia AB lấy điểm D sao cho A là trung điểm của BC. Gọi K là trung điểm của BC đường thẳng d a cắt cạnh AC tại M . tính MC sách kntt lớp 7
Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC (H thuộc BC).
a/ Chứng minh Tam giác AHB = Tam giác AHC. Từ đó suy ra HB = HC
b/ Biết AH = 8 cm, BC = 12 cm. Tính độ dài AC.
c/ Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC). Chứng minh Tam giác HDE cân.