choa tam giác abc vuông tại a, có ah là đường cao của tam giác, d là trung điểm của đoạn ab đường thẳng a vuông góc với cd tại e cắt bc ở f
a, chúng minh ta giác acd đồng dạng với tam giác eca
b, chứng minh goc ceh bằng góc bhd
c, cb.fh=ch.fb
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH (H thuộc BC). Gọi D là trung điểm của AB. Qua A kẻ đường thẳng vuông góc với CD cắt CD và CB lần lượt tại E và F. Gọi K là hình chiếu vuông góc của D trên BC.
1) Chứng minh rằng các tam giác ADE và CDA đồng dạng với nhau.
2) Chứng minh rằng BD.BC = BE.CD.
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH (H thuộc BC). Lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Chứng minh tam giác ABC đồng dạng với tam giác HBA. Qua điểm C kẻ đường thẳng vuông góc với tia AD tại E. Chứng minh AH.CD=CE.AD. Chứng minh tam giác HDE đồng dạng tam giác ADC và BD.AC=2AD.HE. Tia AH cắt tia CE tại F chứng minh AF^2=2BF.AE
cho tam giác ABC cân tại A đường cao AM ,D là trung điểm của AM, H là hình chiếu của M trên CD, AH cắt BC tại N, BH cắt AM tại E .c/m rằng
a)tam giác DHM đồng dạng vs tam giác DMC
b) DH.BM=AD.HM
c)EN vuông góc với AB
Bài 4: Cho tam giác ABC vuông tại A đường cao AH .
a) Chứng minh tam giác AHB đồng dạng tam giác ABC
b) Gọi M , N lần lượt là trung điểm của BC và AB . Đường vuông góc BC kẻ từ B cắt MN tại I . Chứng minh
c) IC cắt AH tại O . Chứng minh O là trung điểm AH
d) Gọi K là giao điểm của CA và BI . Tính độ dài BK ,biết AB = 15 cm , AC = 20 cm .
Cho tam giác ABC nhọn có AB<AC. Gọi BD, CE là đường cao, H là trực tâm của tam giác ABC, I là trung điểm của BC. a) C/m AD.AC=AB.AE và góc ADE = góc ABC b) Qua H kẻ đường thẳng vuông góc vói IH cắt cạnh AB tại M, cắt cạnh AC tại N. C/m H là trung điểm của MN
Cho tam giác ABC vuông tại A ( AC > AB ), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh tam giác ABC đồng dạng với tam giác HAC
b) Chứng minh EC . AC = DC. BC
c) Chứng minh tam giác BEC = tam giác ADC và tam giác ABE vuông cân
Cho tam giác ABC vuông tại A. Phân giác góc A cắt BC tại D. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E. a) So sánh hai tam giác DEC và ABC. b) Chứng minh DB =DE.
cho tam giác ABC vuông tại A. AM là tia phân giác góc BAC. Từ C kẻ đường thẳng vuông góc với BM tại D cắt AC tại N