Hình học lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Văn Chín

Cho tam giác ABC vuông tại A.Đường cao AH.Gọi I,K lần lượt là hình chiếu của H trên cạnh AB và AC.M là trung điểm của BH.N là trung điểm của CH
a) Chứng minh IK đi qua trung điểm của HA
b) Chứng minh tứ giác MNKI là hình thang vuông.Tìm điều kiện của tam giác ABC để MNKI là hình chữ nhật
c) Gọi L là trung điểm của BC.Chứng minh rằng AL vuông góc với IK

Võ Đông Anh Tuấn
4 tháng 11 2016 lúc 9:34

a) Tứ giác AKHI có 4 góc vuông nên nó là hình chữ nhật, có IK và AH là hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường. Vậy IK đi qua trung điểm của AH.
b) Tam giác vuông có KN là trung tuyến nên KN = 1/2HC = HN. Vậy tam giác NKH cân
Suy ra: góc KHN = góc HKN (1)
Tam giác OHK cân vì OH = OK.
Suy ra: góc OHK = góc OKH (2)
Mà góc OHK + góc KHN = 1 vuông (3)
Từ (1), (2), (3) Suy ra OKH + góc HKN = góc OKN = 1 vuông. Vậy NK vuông góc với KI (4)
Chứng minh tương tự: MI vuông góc với KI (5)
Từ (4) và (5) Suy ra MI // NK
Vậy tứ giác MNKI là hình thang vuông.
Khi MNKI là hình chữ nhật thì góc KNC = 1v Suy ra góc NCK = 45 độ. Vậy tam giác ABC vuông cân thì MNKI là hình chữ nhật.
c) AL // KN ( cặp góc đồng vị LAC và NKC bằng nhau vì cùng bằng góc C)
Mà NK vuông góc với IK ( câu b)
Suy ra AL vuông góc với IK


Các câu hỏi tương tự
Nguyễn Khánh Linh
Xem chi tiết
thang anh
Xem chi tiết
Đào Phương Duyên
Xem chi tiết
Tiểu Thư Họ Phạm
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Phạm Quang Minh
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Hồ Quế Ngân
Xem chi tiết
Hồ Quế Ngân
Xem chi tiết