Cho tam giác ABC vuông tại A, có đường cao AH (H thuộc BC). Biết độ dài đoạn AC bằng 5cm, đoạn HC bằng 4cm. Tính độ dài các cạnh AB và BC.
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
1. Cho ∆ABC biết BC = 7.5cm, AC = 4.5cm, AB = 6cm.
a) ∆ABC là tam giác gì? Tính đường cao AH của ∆ABC.
b) Tính độ dài các cạnh BH, HC.
2. Cho ∆ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.
Cho tam giác ABC đều, có AH là đường cao và M là điểm bất kì thuộc đoạn BC. Kẻ MP và MQ lần lượt vuông góc với AB và AC. Gọi O là trung điểm của AM. Gọi G là trọng tâm tam giác ABC, I là giao điểm của PQ và OH. Chứng minh rằng: 3 điểm M, I, G thẳng hàng
cho tam giác ABC vuông tại A đường cao AH (H thuộc BC) biết AB=4, AH=2. tính BC
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Cho tam giác ABC vuông tại A có độ dài AB = 6cm; BC = 10cm, đường cao AH. Độ dài HC là: