\(\cos\widehat{C}=\cos30^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow BC=\dfrac{10\cdot2}{\sqrt{3}}=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)
Áp dụng PTG: \(AB=\sqrt{BC^2-AC^2}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)
\(\cos\widehat{C}=\cos30^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow BC=\dfrac{10\cdot2}{\sqrt{3}}=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)
Áp dụng PTG: \(AB=\sqrt{BC^2-AC^2}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A có đường cao AH. Biết HB = 9cm, AB = 18cm. Độ dài cạnh AC (Kết quả làm tròn đến chữ số thập phân thứ hai ) xấp xỉ là
: Cho tam giác ABC vuông tại A có AB = 12 cm, = 500
a) Tính độ dài BC và AC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD, DC, BD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Cho tam giác ABC vuông tại A có \(\widehat{B}\) = \(60^0\), BC = 6cm.
a) Tính AB, AC (kết quả làm tròn đến chữ số thập phân thứ nhất)
b) Kẻ đường cao AH của tam giác ABC. Tính HB, HC
c) Trên tia đối của tia BA lấy điểm D sao cho DB = BC. Chứng minh: \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
Cho tam giác ABC vuông tại A có AB = 12 cm, acb = 50 độ 0 a) Tính độ dài BC và AC? b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD, DC, BD? (Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Cho tam giác ABC vuông tại B, biết AB=8cm, góc A bằng 67 độ. Cạnh làm tròn đến chữ số thập phân thứ 2
Cho tam giác ABC vuông tại A ' đường cao AI a) Biết AB =15cm,BI =9cm ,tính BC,AC,AI( làm tròn kết quả 1 chữ số thập phân nếu có ) b) kẻ IK vuông góc IC =AK,AC chứng minh BI*AC c) qua A kẻ đường song song với BC cắt tại tia IK tại H chứng minh IK*AI*CI=AK*CK*AC
Cho tam giác ABC có BC = 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC ( làm tròn đến chữ số thập phân thứ 2)
Giúp với akk mình cần gấp
Cho tam giác ABC vuông tại A có BC=a, CA=b, AB=c. Giải tam giác ABC biết: b=10cm, góc C=30 độ.
Cảm ơn rất nhiều ạ!
Cho tam giác ABC vuông tại A có đường cao AH. Biết BH= 4cm, CH= 9cm. Gọi M là trung điểm của AC. Tính góc BMC? (số đo làm tròn đến độ)