Cho tam giác ABC vuông tại A (AB<AC). Vẽ đường cao AH (H thuộc BC).
a) Chứng minh: tam giác ABH ~ tam giác CBA. Từ đó suy ra AB2= BH.BC
b) Trên tia HC, lấy HD=HA. Từ D vẽ đường thẳng song song với AH cắt AC tại E. C/m: CE.CA=CD.CB
c) C/m: AE=AB
d) Gọi M là trung điểm BC. CMR: AH.BM = AB.HM + AM.BH
Cho tam giác ABC vuông tại A ( AC > AB ), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh tam giác ABC đồng dạng với tam giác HAC
b) Chứng minh EC . AC = DC. BC
c) Chứng minh tam giác BEC = tam giác ADC và tam giác ABE vuông cân
Cho ΔABC vuông tại A (AC > AB), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
C/m: a) ΔABC ∼ ΔHAC.
b) EC . AC = DC . BC.
c) ΔBEC ∼ ΔADC.
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH (H thuộc BC). Lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Chứng minh tam giác ABC đồng dạng với tam giác HBA. Qua điểm C kẻ đường thẳng vuông góc với tia AD tại E. Chứng minh AH.CD=CE.AD. Chứng minh tam giác HDE đồng dạng tam giác ADC và BD.AC=2AD.HE. Tia AH cắt tia CE tại F chứng minh AF^2=2BF.AE
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH (H thuộc BC). Gọi D là trung điểm của AB. Qua A kẻ đường thẳng vuông góc với CD cắt CD và CB lần lượt tại E và F. Gọi K là hình chiếu vuông góc của D trên BC.
1) Chứng minh rằng các tam giác ADE và CDA đồng dạng với nhau.
2) Chứng minh rằng BD.BC = BE.CD.
Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Trên tia HC lấy điểm K sao cho AH = HK.đường thẳng vuông góc với BC tại K cắt AC tại I
a) chứng minh tam giác IKC đồng dạng với tam giác BAC
b) chứng minh góc AKC = góc BIC
c) gọi M là trung điểm của đoạn thẳng BI, tia AM cắt BC tại D. Chứng mih BD/DC=HK/HC
Giúp mình với. mình cần gấp. cảm ơi
cho tam giác ABC vuông tại A (AB<AC) ,AH là đường cao
a)cm tam giác HBA và tam giác ABC
b)Trên tia đối của tia BA lấy điểm D sao cho AD=AB.Gọi M là trung điểm của AH. CM AD.AC=BD.MC
cho tam giác ABC vuông tại A (AB<AC) có AH là đường cao, AB= 3cm,, BC = 5cm
a) Chứng minh tam giác HBA đồng dạng với tam giác ABC
b) Tính BH, CH, AC
c) Trên tia đối của tia AB lấy điểm D sao co AD =AB. Gọi M là trung điểm của AH. Chứng minh HD.AC = BD.MC
d) Chứng minh MC vuống góc với DH
Cho tam giác ABC vuông tại A, AB , AC, đường cao AH.
a) Chứng minh tam giác HBA đồng dạng với tam giác ABc suy ra AB2 = BH. BC
b) Qua B vẽ đường thẳng song song với AC cắt AH tại D. Chứng minh HA.HB + HC.HD
c) Chứng minh AB2 = AC.BD
d) Gọi K là trung điểm AH. Trên đoạn AC lấy điểm N sao cho góc HBK bằng góc ABN. Gọi M là trung điểm Bd. Chứng minh M, H, N thẳng hàng