Kẻ AG cắt BC tại P; kẻ AQ vuông góc với MN.
Áp dụng hệ thức lượng vào tam giác AMN ta có :
\(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AQ^2}\)
Lại có \(AQ\le AG\) ( vì AG là đường cao trong tam giác AQG )
Do đó \(\frac{1}{AM^2}+\frac{1}{AN^2}\ge\frac{1}{AG^2}\)
Vì G là trọng tâm của tam giác ABC nên
\(AG=\frac{2}{3}AP=\frac{2\cdot AP}{3}=\frac{2\cdot BP}{3}=\frac{BC}{3}\) ( đường trung tuyến ứng với cạnh huyền )
\(\Rightarrow\frac{1}{AM^2}+\frac{1}{AN^2}\ge\frac{1}{\left(\frac{BC}{3}\right)^2}=\frac{1}{\frac{BC^2}{9}}=\frac{9}{BC^2}\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow MN\perp AP\)