Cho tam giác ABC vuông tại A, AB = a , AC = b , đường cao AH. Ở phía ngoài tam giác vẽ các hình vuông ABDE, ACFG, BCIK.
a) Tính diện tích tam giác DBC.
b) Chứng minh rằng AK = DC .
c) Đường thẳng AH cắt KI ở M. Tính diện tích các tứ giác BHMK, CHMI, BCIK .
Ai giúp em với chiều em học r ạ
cho tam giác ABC vuông tại A, đường cao AH,BC=20cm,AH=8cm. gọi D là hình chiếu của H trên AC, E là hình chiếu của H trên AB
a, chứng minh tam giác DE đồng dạng với tam giác ABC
b,tính diện tích tam giác ADE
cho tam giác ABC vuông tại A(AB<AC)
kẻ đường cao AH.Lấy K đỗi xứng với H qua AC.
Hk cắt AC tại M.Kẻ HN//AC(N∈AB)
a)Tứ giác AMHN là hình gì?Tại sao?
b)Qua K kẻ đt song song với AH cắt AC tại I.CM tứ giác AKIH là hình thoi
c)Tính AH biết AB = 6 cm;diện tích tam giác ABC là 24 cm2
d)TÌm đk để tam giác ABC để hình thoi AKIH là hình vuông
Giúp mình với ạ!Mình cảm ơn
Cho tam giác ABC vuông tại A. Gọi E,Q lần lượt là trung điểm của BC,BA. Lấy F là điểm đối xứng với E qua Q.
a, C/m tam giác AEBF là hình thoi.
b, Cho AC=3 cm;BC=5cm. Tính diện tích tam giác ABC. c, Tìm điều kiện của tam giác ABC để AEBF là hình vuông. MONG MN GIÚP MIK VỚI Ạ, MIK CẦN GẤP. MIK CẢM ƠN Ạ 🥺🥺
cho tam giác ABC vuông tại A , lấy một điểm bất kì trên cạnh AC. Từ C vẽ đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D,cắt tia BA tại E.
a) Tính diện tích tam giác DECB, biết BMC=120độ và diện tích tam giác AED=36cm2
b) Chứng minh rằng khi điểm M di chuyển trên cạnh AC thì tổng BM.BD+CM.CA có giá trị không đổi
c) kẻ HD vuông góc với BC( H thuộc BC). Gọi P,Q lần lượt là trung điểm của các đoạn thẳng BH,DH. Chứng minh CQ vuông góc PD
Cho tam giác ABC. Một đường thẳng song song với BC cắt AB, AC theo thứ tự ở D và E. Gọi G là một điểm nằm trên BC. Tính diện tích tứ giác ADGE biết diện tích tam giác ABC bằng 16 cm vuông, diện tích tam giác ADE bằng 9cm vuông
a) Cho hai tam giác ABC và DBC. Kẻ đường cao AH của tam giác ABC. Kẻ đường cao DK của tam giác DBC. Gọi S là diện tích của tam giác ABC. Gọi S' là diện tích của tam giác DBC
Chứng minh rằng : \(\dfrac{S'}{S}=\dfrac{DK}{AH}\)
b) Cho tam giác ABC và điểm M bất kì nằm trong tam giác đó. Kẻ các đường cao của tam giác đó là AD, BE và CF. Đường thẳng đi qua điểm M và song song với AD cắt cạnh BC tại điểm H. Đường thẳng đi qua điểm M và song song với BE cắt cạnh AC tại điểm K. Đường thẳng đi qua điểm M và song song với CF cắt cạnh BA tại điểm T
Chứng minh rằng \(\dfrac{MH}{AD}+\dfrac{MK}{BE}+\dfrac{MT}{CF}=\)
Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH, biết AB=12cm, AC=16cm
a) Tính BC và AH
b) Chứng minh tam giác BHA đồng dạng tam giác ABC
Tam giác ABC vuông tại A, đường phân giác AD, AB cm =10 , AC cm =15 . Tính diện tích hình vuông có đường chéo là AD.