Kẻ \(DH\perp BC\left(H\in BC\right)\)
△ABD và △HBD có:
\(\widehat{BAD}=\widehat{BHD}=90^o\\ BD:\text{cạnh chung}\\ \widehat{ABD}=\widehat{HBD}\)
\(\Rightarrow\text{△ABD = △HBD (cạnh huyền - góc nhọn)}\\ \Rightarrow AD=HD\)
Mà △HCD vuông tại H nên DC > DH (cạnh huyền lớn hơn cạnh góc vuông)
Từ đó suy ra DC > AD