a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
b) Ta có: ΔABD=ΔEBD(cmt)
nên AD=ED(hai cạnh tương ứng)
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)
Suy ra: AF=EC(hai cạnh tương ứng)
Ta có: ΔADB=ΔEDB(cmt)
nên BA=BE(hai cạnh tương ứng)
Ta có: BA+AF=BF(A nằm giữa B và F)
BE+EC=BC(E nằm giữa B và C)
mà BA=BE(cmt)
và AF=EC(cmt)
nên BF=BC
Xét ΔBFC có BF=BC(cmt)
nên ΔBFC cân tại B(Định nghĩa tam giác cân)
bạn ơi , mình chỗ góc BC là cạnh Bc chứ nhỉ
a , xét tam giác ABD và tam giác EBD , ta có :^BAD=^BED=90 độBD chung^ABD=^DBE (phân giác )=>t.giác ABD = t.giác EBD ( g.c.g )=> AD = DE ( 2 Cạnh t.ứng )=> BA = BE ( 2 cạnh t.ứng )b, xét t.giác AFD và t.giác EDC , ta có : ^ADF=^EDC ( đối đỉnh )AD =DE ( cmt )^FAD = ^DEC = 90 độ=> t.giác AFD= t,giác EDC( g.c.g )=>AF =EC ( 2 cạnh t.ứng )=>^BFE = ^BAC ( 2 góc t.ứng )+ vì BA = BE , AE =AC => t.giác BFC cân tại B