Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng. 2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng
* Không cần làm ạ
Các bạn nhìn hình ảnh xem đây là dùng phương pháp gì để chứng minh thẳng hàng ạ ! ( mình chưa thấy có cái gì liên quan chỉ chứng minh được I trùng với M sao thẳng hàng được ạ )
Cho tam giác ABC vuông tại A. Các đường phân giác của góc B, C cắt nhau tại I. Hình chiếu của IB và IC trên BC có độ dài lần lượt là m và n. Tính diện tích tam giác ABC theo m và n
Cho tam giác ABC vuông tại A. Các đường phân giác của góc B, C cắt nhau tại I. Hình chiếu của IB và IC trên BC có độ dài lần lượt là m và n. Tính diện tích tam giác ABC theo m và n
Cho tam giác ABC đều, G là trọng tâm của tam giác . Gọi M là 1 điểm bất kỳ thuộc BC, I là trung điểm của AM. Kẻ AH vuông góc với BC. Gọi D và E lần lượt là hình chiếu của MN trên AB và AC
a) Tứ giác DIEH là hình gi? Vì sao?
b) Chứng minh: IH, DE, MG đồng quy
Cho tam giác ABC có AB<AC, D nằm giữa A và C sao cho: \(\widehat{ABD}=\widehat{ACB}\). Phân giác của góc A cắt BC tại E, BD tại F. Qua A kẻ đường thẳng vuông góc với AE cắt BC tại M. CM: MB.EC=MC.EB
Cho tam giác ABC vuông tại A có AB=c, AC=b và đường phân giác của góc A là AD=d. CM: \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{\sqrt{2}}{d}\)
Cho tam giác ABC vuông tại A có AB=c, AC=b và đường phân giác của góc A là AD=d. CM: \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{\sqrt{2}}{d}\)
cho tam giác abc vuông tại a. ab=15cm, ac=20cm. vẽ tia ax//bc và tia by vuông góc với bc tại b, tia ax cắt by tại d
a, cm tam giác abc đồng dạng tam giác dab
b, tính bc, da, db
c, ab cắt cd tại i. tính diện tích tam giác bic