Cho tam giác ABC, một đường thẳng song song với BC cắt AB,AC lần lượt tại D,E và cắt đường thẳng kẻ từ C song song với AB tại F. Gọi giao điểm AC và BF là S
a, CMinh: AB.CE=AC.CF
b,CMinh:SC2=SA.SE
Cho tam giác ABC vuông tại A, AB < AC. AB= 3cm, AC= 4cm. Đường phân giác BD.
a, Tính BC, AD, CD
b, Qua D kẻ đường thẳng song song với AB cắt BC tại K. Chứng minh: BK.BC = AB.CK
c, Qua D kẻ đường thẳng vuông góc với BD cắt BD, AB và đường thẳng AC lần lượt tại E,G,H. Chứng minh \(\dfrac{CH}{BH}=\dfrac{KD}{AG}\)
1) Cho tam giác ABC đường thẳng song song với BC cắt AB, AC tại D, E vẽ đường thẳng a quá A song song với BC a cắt các đường BE, CB lần lượt tại G,K. C/m A là trung điểm của KG
2) Cho tam giác ABC trong nửa mặt phẳng bờ BC, vẽ tia Cx song song với AB, từ trung điểm E của AB vẽ đường thẳng song song với BC cắt AC tại D và cắt Cx tại F, đường thẳng BF cắt AC tại I
a) C/m IC2 = IA.ID
b, Tính ID/IC = ?
Mình vẽ hình rồi mình chưa nghĩ được lời giải
Qua trọng tâm G của tam giác ABC, kẻ đường thẳng song song với AC cắt AB và BC lần lượt ở D và E. Tính độ dài đoạn DE, biết AD + EC = 16cm, chu vi tam giác ABC=75cm.
Cho ∆ABC vuông tại A có phân giác của góc ABC cắt AC tại D. Từ D vẽ đường thẳng song song BC cắt AB tại M. a) Giả sử AB = 6cm, AD = 3cm, CD = 5cm. Tính BC. Tính tỉ số diện tích của ∆AMD với ∆ABC b) Vẽ DE BC tại E. Chứng minh: ∆AMD ∽ ∆EDC. Từ đó suy ra: c) Từ C vẽ đường thẳng vuông góc với BD cắt BD tại I. Chứng minh: BC^2 = BD.BI + CD.CA
Cho tam giác ABC vuông tại A có AB = 20cm, AC = 21cm, đường phân giác của góc A cắt BC tại điểm D.
Tính BC, DB, DC (làm tròn đến phần trăm)
Gọi E, F lần lượt là hình chiếu của D lên AB, AC. Chứng minh ∆BED đồng dạng ∆BAC và tính tỉ số đồng dạng của chúng.
Tính diện tích tứ giác AEDF.
Cho tam giác ABC có AB>AC, BE là phân giác, BD là trung tuyến (E,D thuộc cạnh AC). Đường thẳng qua C vuông góc với BE cắt BE, BD và BA lần lượt tại F, G và K. Gọi M là giao điểm của DF với BC. Chứng minh:
a)M là trung điểm của đoạn thẳng BC
b) DA/DE = 1+BK/DF
c)Đường thẳng GE song song với BC
Cíu với.
cho tam giác abc kẻ đường thẳng song sonng bc cắt ab ở d và cắt ac ở e qua c kẻ cx song song ab cắt de ở g goi h là giao điểm ac , bg kẻ hi song song ab ( i thuộc bc ) chứng minh rằng :
a) AD.EG=BD.DE
B) HC^2=HE.HA
C) 1/HI=1/AB+1/CG
Cho tam giác ABC vuông tại A. đường cao AH. phân giác của góc A cắt cạnh huyền BC tại D. tại D kẻ đường thẳng vuông góc với BC cắt AC ở E và AB ở F
a )Chứng minh AB.EC = BC. DE b )Chứng minh AH song song FD suy ra tam giác HAB đồng dạng với tam giác DFB c) Chứng minh DB = DE d) cho AB = 6 cm BC = 10 cm và EC = 7 cm .Tính AC ,DE và DC