b: Xét ΔBHA vuông tại H và ΔBHE vuông tại H có
BH chung
góc ABH=góc EBH
=>ΔBHA=ΔBHE
c: ΔBHA=ΔBHE
=>BA=BE
Xét ΔBAK và ΔBEK có
BA=BK
góc ABK=góc EBK
BK chung
=>ΔBAK=ΔBEK
=>góc BEK=góc BAK=90 độ
=>EK vuông góc bC
d: AK=KE
KE<KC
=>AK<KC
b: Xét ΔBHA vuông tại H và ΔBHE vuông tại H có
BH chung
góc ABH=góc EBH
=>ΔBHA=ΔBHE
c: ΔBHA=ΔBHE
=>BA=BE
Xét ΔBAK và ΔBEK có
BA=BK
góc ABK=góc EBK
BK chung
=>ΔBAK=ΔBEK
=>góc BEK=góc BAK=90 độ
=>EK vuông góc bC
d: AK=KE
KE<KC
=>AK<KC
BÀI 3 Cho tam giác ABC vuông tại C có góc A=60 độ và đường phân giác của góc BAC cắt BC tại E . Kẻ EK vuông góc AB tại K (K thuộc AB).Kẻ BD vuông góc với AE tại D (D thuộc AE ) chứng minh a) TAm giác ACE bằng tam giác AKE b) AE là đường trung trực của đoạn thẳng CK c)KA=KB d)EB>EC
Cho tam giác ABC , Mlà trung điểm của BC , Trên tia đổi của tia MA lấy điểm K sao cho MK = MA a ) Chứng minh tam giác ABC = tam giác KMB b) Chứng minh AC//BK c ) từ M kẻ MH vuông góc với AC ( H thuộc AC ) , kẻ MI vuông góc với BK ( I thuộc BK) . Chứng minh MH = MI d) Trên nửa mặt phẳng không chứa C có bờ AB , vẽ tia Ax vuông góc với AB , trên ta đó lấy điểm D sao cho A = AB . Trên nửa mặt phẳng ko chứa tia B có bờ AC , vẽ tia Ay vuông góc với AC , trên tia đó lấy điểm E sao cho AE = AC , Chứng minh rằng AM = DE/2
Cho tam giác ABC vuông tại A . Tia phân giác góc B cắt AC tại D , tia phân giác góc C cắt AB tại E kẻ DH vuông góc với BC tại H, kẻ EK vuông góc với BC tại K a) Chứng minh BA=BH b) BD vuông góc với AH c) Chứng minh AB+AC=BC+HK d) Tính góc HAK
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại E. Từ E kẻ ED vuông góc với BC tại D.
a, Chứng minh tam giác ABE= tam giác DBE.
b, Chứng minh BE là đường trung trực của đoạn thẳng AD.
c, Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh AD là tia phân giác của góc BAD
d, Gọi K là giao điểm của AH và BE. Chứng minh rằng DK song song với AC
Cho tam giác ABC vuông tại A, đường phân giác BE. Kẻ EH vuông góc với BC tại H, gọi K là giao điểm của hai đường thẳng BA và HE.
a) Chứng minh AE =HE ,AB = BH
b) Chứng minh tam giác BCK là tam giác cân
c) Tính BK, AC biết AB=6 cm BC=10 cm
d) Chứng minh AH song song KC
Bài 4.Cho tam giác ABC vuông tại A, kẻ đường phân giác BI (I thuộc AC) , kẻ ID vuông góc với BC (D thuộc BC). a) Chứng minh tam giác AIB = tam giác DIB
b) Chứng minh BI vuông góc AD
c) Gọi E là giao điểm của BA và DI. Chứng minh AD// EC
d) Chứng minh EIC cân
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC (D thuộc AC) và
CE vuông góc với AB (E thuộc AB).
a) Chứng minh: BD = CE.
b) Chứng minh: Tam giác AED cân.
c) Gọi I là giao điểm của BD và CE. Chứng minh: AI là phân giác của góc A và
AI vuông góc BC
Các bạn giúp mình với
Bài 4: ( 2,5 điểm)
Cho ΔABC vuông tại A, kẻ phân giác BK của (K thuộc AC),
kẻ AE tại H và E thuộc BC
a) Chứng minh: ΔBHA = ΔBHE.
b) Chứng minh: EK.
c) Chứng minh: AK < KC.
bài 4: cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E . Kẻ EH vuông góc BC tại H (H thuộc BC) Chứng minh a) tam giác ABE= tam giác HBE b) BE là đường trung trực của đoạn thẳng AH c) EC>AE