Xét ΔBAM vuông tại A và ΔBEM vuông tại E có
BM chung
góc ABM=góc EBM
=>ΔBAM=ΔBEM
=>MA=ME
Xét ΔBAM vuông tại A và ΔBEM vuông tại E có
BM chung
góc ABM=góc EBM
=>ΔBAM=ΔBEM
=>MA=ME
Cho tam giác ABC vuông tại A có góc C=30 độ. Vẽ đường phân giác góc B cắt AC tại M. Từ M kẻ ME vuông góc BC (E Thuộc BC)
a. Chứng minh tam giác ABM= tam giác EBM
b. Chứng Minh tam giác ABE là tam giác đều
cho tam giác ABC vuông tại A,đường phân giác BM(M thuộc AC).từ M kẻ đường thẳng MK vuông góc với BC(K thuộc BC)
a, chuwmgs minh tam giác BAM=tam giác BKM
b,Từ A kẻ đường thẳng song song với MK cắt BC tại D. Chứng minh AK là tia phân giác góc DAC
Cho góc nhọn xOy. Gọi M là một điểm thuộc tia phân giác của góc xOy. Kẻ MA vuông góc với Ox ( A ϵ Ox), kẻ MB vuông góc với Oy ( B ϵ Oy). Tia AM cắt OB tại H, tia BM cắt OA tại K
a) Chứng minh : MA = MB
b) Chứng minh: △OAH = △OBK ; △OHK là tam giác gì? Vì sao?
c) Tính MK, biết OK = 10cm, OB =6 cm, MA = 3 cm .
d) Gọi G là trung điểm của HK. Chứng minh O, M, G thẳng hàng.
Cho tam giác ABC cân tại A ( Tia phân giác của góc A cắt cạnh BC tại M Từ M kẻ MH và MK .
a) Chứng minh: Tam giác AMB = tam giác AMC
b) Chứng minh: AM vuông góc BC
Cho tam giác ABC có 3 góc nhọn. Kẻ AH vuông góc với BC H thuộc BC. Qua H kẻ HM vuông góc với AB (M thuộc BA). Trên tia đối của tia MH lấy E sao cho ME = MH. a)Chứng minh rằng: tam giác AEM =tam giác AHMb)Chứng minh rằng: AE vuông góc EB c)Qua H kẻ HN vuông góc với AC (N thuộc CA), trên tia đối của tia NH lấy F sao cho NF = NH. Chứng minh rằng: AE = AF. d)Chứng minh rằng: BC = BE + CF.