\(\dfrac{MB}{CN}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)
\(=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
hay \(MB\cdot AC^3=AB^3\cdot CN\)
\(\dfrac{MB}{CN}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)
\(=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
hay \(MB\cdot AC^3=AB^3\cdot CN\)
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
Cho tam giác ABC có \(\frac{AB}{AC}=\frac{2}{3}\) và đường cao AH. Gọi M và N lần lượt là hình chiếu của H trên AB và AC. Tỉ số của hai đoạn thẳng AM và AN là....................
Cho tam giác ABCvuông tại A, đường caoAH. Biết AB 3cm,AC 4cm
a) Tính AH
b) Gọi D,E lần lượt là hình chiếu của H trên AB và AC. Chứng minh tam giác AED và tam giác ABC đồng dạng
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Cho tam giác ABC đều, có AH là đường cao và M là điểm bất kì thuộc đoạn BC. Kẻ MP và MQ lần lượt vuông góc với AB và AC. Gọi O là trung điểm của AM. Gọi G là trọng tâm tam giác ABC, I là giao điểm của PQ và OH. Chứng minh rằng: 3 điểm M, I, G thẳng hàng
cho tam giác ABC vuông tại A ( AB<AC) đường cao AH . gọi D,E lần lượt là hình chiếu vuông góc của H lên AB và AC. hai đường thẳng BC vad DE cắt nhau tại I.
a) cm: AH=DE
b)cmr" ID.IE=IB.TC
c) các đường thẳng HD, HE lân lượt cắt đường thẳng BA tại M và cmr BM//CN
Cho ∆ABC vuông tại A, đường cao AH.Gọi E,F lần lượt là hình chiếu của H lên AB,AC
a) Chứng minh AB*AE=AF*AC
b) Chứng minh AH^3=BC*BE*CF