Cho tam giác ABC vuông tại A (AB<AC), đường cao AH
a) CM tam giác ABC đồng dạng tam giác HBA. Từ đó suy ra AB^2=BH.BC
b) Gọi D là điểm thuộc HC. Đường vuông góc với BC cắt AC tại E. CM góc ADC= góc BEC
c) CM CH/AC=DA/EB
Bài 1. Cho tam giác vuông ABC ( Â = 90) có AB = 9cm,AC = 12cm.Tia phân giác góc A cắt BC tại D .Từ D kẻ DE vuông góc với AC (E thuộc AC) .
a) Tính độ dài các đoạn thẳng BD,CD và DE.
b) Tính diện tích các tam giác ABD và ACD.
Cho tam giác ABC vuông tại A, có AB=6cm, AC=8cm và đường cao AH a. Cm tam giác ABC ~ tam giác AHB b. Tính BC,HB c. Qua B vẽ đường thẳng d vuông góc với AC, tia phân giác của góc BAC cắt BC tại M và cắt đường thẳng d tại N. Cm AB/AC= MN/AM
Cho tam giác ABC có 3 góc nhọn, đường cao BD ( D thuộc AC). Kẻ DE vuông góc với BC tại E.
a) CMR tam giác BDE đồng dạng với tam giác BCD
b) Kẻ DF vuông góc với AB tại F. CMR: BD2 = BF.BA
c) CMR góc BFE = góc BCA
d) Vẽ CG vuông góc với AB tại G. Đoạn thẳng EF cắt GD tại F. CMR H là trung điểm của GD
Cho tam giác ABC vuông ở A đường cao AH
a) tam giác AHB đồng dạng tam giác CAB
b)phân giác BD cắt AH tại E (D thuộc AC)
c)chứng minh rằng EA/EH = DC/DC
d) Giả sử tam giác ABC vuông cân tại A lấy M là trung điểm của AC đường thẳng qua A vuông góc với BM cắt BC ở F .chứng minh BF=2FC
Cho tam giác abc vuông tại a có đường cao ah(h thuộc bc) Cm:tam giác abh đồng dạng tam giác cba từ đó suy ra ab2=bh.bc B)cm:ah2=bh.ch C)cm:vẽ bi là phân giác của góc aBc (i thuộc ac) kẽ ck vuông góc bi (k thuộc bi) Cm: bi2=ab.bc-ai.ci
Cho tam giác ABC vuông tại A có AB = 6cm ; AC= 8cm . Đường cao AH và phân giác BD cắt nhau tại I ( H trên BC và D trên AC ) .
a) Tính độ dài AD , DC
b) Cm : tam giác ABC đồng dạng với tam giác HBA và AB^2 = BH.BC
c) Cm : tam giác ABI đồng dạng với tam giác CBD
d) Cm : \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)
( Giải giúp mình câu c với d ạ cảm ơn ^^ )
cho tam giác ABC vuông tại A , AB=12cm , AC=16cm. Vẽ đường cao AH( H thuộc BC ) và tia phân giác của góc A cắt BC tại D a/ chứng minh tam giác HBA đồng dangj tam giác ABC b/ Tính độ dài cạnh BC c/ tính tỉ số diện tích của hai tam giác ABD và ACD d/ Tính độ dài các đoạn thẳng BD và CD
Cho tam giác ABC có AB>AC, BE là phân giác, BD là trung tuyến (E,D thuộc cạnh AC). Đường thẳng qua C vuông góc với BE cắt BE, BD và BA lần lượt tại F, G và K. Gọi M là giao điểm của DF với BC. Chứng minh:
a)M là trung điểm của đoạn thẳng BC
b) DA/DE = 1+BK/DF
c)Đường thẳng GE song song với BC
Cíu với.