Cho tam giác ABC vuông tại A có đường cao AH. Trên tia đối tia HA lấy một điểm D. Vẽ CE vuông góc với đường thẳng BD tại E.
a) C/m : Tam giác BHA đồng dạng tam giác BAC
b) C/m : BH.BC = BD.BE
c) C/m : Tam giác BAD đồng dạng tam giác BEA và => góc BEA = góc BCA
d) HD cắt CE tại F, C/m : HA2 = HD.HF
Cho tam giác ABC vuông tại A, có AB= 8cm, đường cao AH. Tia phân giác của góc C cắt AB tại D.
a) Chứng minh tam giác HBA đồng dạng với tam giác ABC
b) Tính BC, BD, AD
c) Từ B vẽ BK vuông góc với CD tại K, BK cắt AH kéo dài tại E, trên CD lấy điểm S sao cho BA=BS. Chứng minh BF vuông góc với EF
Cho tam giác ABC vuông tại A ( AB<AC) đường cao AH
a/ Chứng minh tam giác BHA đồng dạng tam giác BAC
b/ Vẽ BD là đường phân giác của góc tam giác ABC cắt AH tại K. Chứng minh : BA.BK = BD.BH
c/ Qua C kẻ đường thẳng vuông góc với BD tại E. Chứng minh AE = EC
Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Trên tia HC lấy điểm K sao cho AH = HK.đường thẳng vuông góc với BC tại K cắt AC tại I
a) chứng minh tam giác IKC đồng dạng với tam giác BAC
b) chứng minh góc AKC = góc BIC
c) gọi M là trung điểm của đoạn thẳng BI, tia AM cắt BC tại D. Chứng mih BD/DC=HK/HC
Giúp mình với. mình cần gấp. cảm ơi
cho tam giác ABC vuông tại A, có AB=5cm, AC=12cm,đường cao AH(H thuộc BC). Tia phân giác của góc ABC cắt AH tại E và cắt AC tại F.
a) Tính độ dài BC,AF,FC
b)Chứng minh tam giác ABF đồng dạng với tam giác HBE
c) C/m tam giác AEF cân
d) C/m AB.FC=BC.AE
Cho tam giác ABC,AB=6cm,AC=8cm,AH là đường cao a)tính độ dài cạnh BC b)chứng minh tam giác HAB đồng dạng với tam giác HAC c)trên cạnh BC lấy điểm E sao cho CE=4cm,chứng minh BE^2=BH.BC d)tia phân giác của góc ABC cắt AC tại D.Tính diện tích tam giác CED Các bạn giúp mk vs mk cảm ơn trước
Cho tam giác ABC vuông tại A ( AC > AB ), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh tam giác ABC đồng dạng với tam giác HAC
b) Chứng minh EC . AC = DC. BC
c) Chứng minh tam giác BEC = tam giác ADC và tam giác ABE vuông cân
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH (H thuộc BC). Lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Chứng minh tam giác ABC đồng dạng với tam giác HBA. Qua điểm C kẻ đường thẳng vuông góc với tia AD tại E. Chứng minh AH.CD=CE.AD. Chứng minh tam giác HDE đồng dạng tam giác ADC và BD.AC=2AD.HE. Tia AH cắt tia CE tại F chứng minh AF^2=2BF.AE