Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bánh Canh Chua Ngọt

cho tam giác ABC vuông tại A có đường cao AH. Kẻ HE, HF vuông góc với AB,AC. chứng minh rằng:
a, EB/FC = AB^3/AC^3
b, BC.BE.BF= AH^3
 

An Thy
22 tháng 6 2021 lúc 16:12

câu b bạn tham khảo ở đây

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-a-duong-cao-ah-goi-ef-theo-thu-tu-la-hinh-chieu-cua-h-tren-ab-aca-chung-minh-bcabcdot-sincaccdot-coscb-chung-minh-afcdot-ac2efcdot-bccdot-aecchung-minh.1076798870119

An Thy
22 tháng 6 2021 lúc 16:22

a) \(HF\parallel AB\) \(\Rightarrow\dfrac{HF}{AB}=\dfrac{CF}{CA}\Rightarrow\dfrac{HF}{CF}=\dfrac{AB}{AC}\)

\(\Rightarrow\dfrac{HF}{CF}.\dfrac{AB^2}{AC^2}=\dfrac{AB^3}{AC^3}\Rightarrow\dfrac{HF}{CF}.\dfrac{BH.BC}{CH.BC}=\dfrac{AB^3}{AC^3}\)

\(\Rightarrow\dfrac{HF.BH}{CF.CH}=\dfrac{AB^3}{AC^3}\Rightarrow\dfrac{HF.BH}{CH}.\dfrac{1}{CF}=\dfrac{AB^3}{AC^3}\left(1\right)\)

Ta có: \(HF\parallel AB\)\(\Rightarrow\angle CHF=\angle CBA\)

Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle CHF=\angle CBA\end{matrix}\right.\)

\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{BE}{BH}=\dfrac{HF}{HC}\Rightarrow BE.HC=HF.BH\)

\(\Rightarrow BE=\dfrac{HF.BH}{HC}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{BE}{CF}=\dfrac{AB^3}{AC^3}\)

 


Các câu hỏi tương tự
Phương Nguyễn
Xem chi tiết
Lan Hương
Xem chi tiết
Minh Pham
Xem chi tiết
48 Nguyễn Thị Minh Xuân
Xem chi tiết
Raterano
Xem chi tiết
Bánh Canh Chua Ngọt
Xem chi tiết
Nguyễn Thành Tấn
Xem chi tiết
thanh thuý
Xem chi tiết
illumina
Xem chi tiết