Tham khảo
Câu hỏi của Hoàng phan hương giang - Toán lớp 7 - Học toán với OnlineMath
Tham khảo
Câu hỏi của Hoàng phan hương giang - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác ABC vuông taị A có AB=6cm, AC = 8cm; đường phân giác BI. Kẻ IH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và IH.
a) Tính BC?
b) CM: tam giác ABI= tam giác HBI.
c) CM: BI là đường trung trực của đoạn thẳng AH.
d) CM: IA<IC
e) CM: I là trực tâm tam giác ABC
Cho tam giác ABC vuông tại A có BC=10cm AC =8cm. Kẻ đường phân giác BI I thuộc AC, kẻ ID vuông góc với BC (D thuộc BC)
a)Tính AB
b)Chứng minh tam giác AIB= tam giác DIB
c)Chứng minh BI là đường trung trực của AD
d)Gọi E là giao điểm của BA và DI. Chứng minh BI vuông góc với EC
Bai 1: Cho tam giac ABC vuong tai A co AB = 6cm, AC = 8cm; duong phan giac BI.Ke IH vuong BC (H thuoc BC). Goi K la giao diem cua AB va IH
a) Tính BC ?
b) CM: tam giac ABI = tam giac HBI
c) CM: BI là đường trung trực của đoạn thẳng AH
d) CM: IA < IC
e) Kéo dài IH cắt AB tại D. CM BỊ vuông góc với DC
Cho tam giác ABC vuông tại A , đường phân giác BE , Kẻ EH vuông góc với BC ( H thuộc BC ) , gọi K là giao điểm của AB và HE , chứng minh rằng :
a , Tam giác ABE = tam giác HBE
b , BE là đường trung trực của đoạn thẳng AH
c , EK = EC
d , AE < EC
Cho tam giác ABC vuông tại A , đường phân giác BE , Kẻ EH vuông góc với BC ( H thuộc BC ) , gọi K là giao điểm của AB và HE , chứng minh rằng :
a , Tam giác ABE = tam giác HBE
b , BE là đường trung trực của đoạn thẳng AH
c , EK = EC
d , AE < EC
e , BE vuông góc với KC
f , Cho AB = 3cm , BC = 5cm . Tính Kc
1. Cho tam giác ABC nhọn, kẻ đường cao AH. Dựng các điểm D và E sao cho AB là trung trực của DH, AC là trung trực EH. DE cắt AC tại I và DE cắt AB tại K.
a. CM tam giác ADE cân
b. CM HA là phân goác của góc KHI.
c. CM AH, BI, CK đồng quy
2. Cho tứ gíc ABCD gọi A'B'C'D' lần lượt là trọng tâm của các tam gíc BCD, tam gíc ACD, tam giác ABD, tgiac ABC. Gọi E, F lần lượt là trung điểm của AC và BD.
a. CM AA' đi qua trung điểm EF
b. CM 4 đường thẳng AA', BB', CC', DD' đồng quy
1. Cho tam giác ABC nhọn, kẻ đường cao AH. Dựng các điểm D và E sao cho AB là trung trực của DH, AC là trung trực EH. DE cắt AC tại I và DE cắt AB tại K.
a. CM tam giác ADE cân
b. CM HA là phân goác của góc KHI.
c. CM AH, BI, CK đồng quy
2. Cho tứ gíc ABCD gọi A'B'C'D' lần lượt là trọng tâm của các tam gíc BCD, tam gíc ACD, tam giác ABD, tgiac ABC. Gọi E, F lần lượt là trung điểm của AC và BD.
a. CM AA' đi qua trung điểm EF
b. CM 4 đường thẳng AA', BB', CC', DD' đồng quy
Cho tam giác ABC vuông tại A, M là trung điểm AB. Trên tia CM lấy K sao cho M là trung điểm CK ..A) CM tam giác MBK= tam giác MAC..B)CM AK// BC..C) qua B kẻ đường thẳng vuông với BC cắt CA tại I.Kẻ AH vuông với BC(H thuộc BC) tia AH cắt KB tại D; CM AI= BD
Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.
kẻ EH vuông góc với BC tại H (H thuộc BC ). chứng minh :
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH
c) EC > AE