Hình học lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Vân Anh

Cho tam giác ABC vuông tại A có AB= 8cm, AC= 15 cm, đường cao AH

a) Tính BC và AH

b) Gọi MN là hình chiếu của H nên AB và AC. Tứ giác AMNH là hình gì? Tính độ dài MN

c) Chứng minh: AM* AB= AN* AC.

Đức Minh
10 tháng 3 2017 lúc 15:10

Câu c của bạn nên đổi thành \(AM\cdot AC=AN\cdot AB\) nhé :)

B A C H M N

a) Tính BC và AH :

Tam giác ABC vuông tại A, áp dụng định lý Pytago vào tam giác ABC :

\(AB^2+AC^2=BC^2\)

\(8^2+15^2=BC^2\)

\(\Rightarrow BC=17\left(cm\right)\)

Ta có : \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot AH\cdot BC\)

\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{8\cdot15}{17}=\dfrac{120}{17}\left(cm\right)\)

b) Có \(\widehat{A}=90^0\)(giả thiết), \(\widehat{M}=90^0\)(hình chiếu), \(\widehat{N}=90^0\)(hình chiếu)

=> Tứ giác AMHN là hình chữ nhật (tứ giác có 3 góc bằng 90 độ).

Vì tứ giác AMHN là hình chữ nhật => Hai đường chéo bằng nhau.

\(\Rightarrow MN=AH=\dfrac{120}{17}\left(cm\right)\)

c) Vì N là hình chiếu của H trên AC \(\Rightarrow N\in AC\)

\(MH\)//\(AN\left(hcn\right)\) => \(MH\)//\(AC\)

Theo hệ quả của định lý Ta-let => \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Suy ra : \(AM\cdot AC=AN\cdot AB\left(đpcm\right)\)


Các câu hỏi tương tự
thang anh
Xem chi tiết
Phụng Trần
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Võ Nhiệt My
Xem chi tiết
No Name
Xem chi tiết
Như Phạm
Xem chi tiết
Như Phạm
Xem chi tiết
Phạm Quang Minh
Xem chi tiết
Vân Hồ
Xem chi tiết